Dragon Extractor of Methylated Genes in Diseases  
Benchmarking Dataset for Building and Testing the Models
(1166 tagged abstracts)

Sentences that are used for the system are in BOLD .
Genes are in ORANGE, Diseases are in RED, and methylation words are in GREEN.


1. PMID 22037943
15-Lipoxygenase-1 (15-LOX-1) is an inducible and highly regulated enzyme in normal human cells that plays a key role in the production of lipid signaling mediators, such as 13-hydroxyoctadecadienoic acid (13-HODE) from linoleic acid. 15-LOX-1 significantly contributes to the resolution of inflammation and to the terminal differentiation of normal cells. 15-LOX-1 is downregulated in human colorectal polyps and cancers. Emerging data support a tumor suppressor role for 15-LOX-1, especially in colon cancer. These data indicate that 15-LOX-1 promotes various anti-tumorigenic events, including cell differentiation and apoptosis, and inhibits chronic inflammation, angiogenesis, and metastasis. The transcriptional repression of 15-LOX-1 in colon cancer cells is complex and involves multiple mechanisms (e.g., histone methylation, transcriptional repressor binding). Re-expression of 15-LOX-1 in colon cancer cells can function as an important therapeutic mechanism and could be further exploited to develop novel treatment approaches for this common cancer.

2. PMID 18174752
A cascade of epigenetic events contributes to the selective growth advantage of cancer cells during tumor progression. PMEPA1 gene is an androgen-inducible negative regulator of cell growth in the prostate epithelium. During prostate cancer progression PMEPA1 gene transcription is reduced or lost prompting us to investigate the role of epigenetic events in this process. In LAPC4 cells harboring wild type androgen receptor decitabine (5-aza-2'-deoxycitidine) treatment resulted in increased expression of PMEPA1 along with other androgen-inducible genes, suggesting a role for DNA methylation in the repression of androgenic cell growth control signals in prostate cancer. In contrast, mutant androgen receptor expressing LNCaP cells were deficient in this response. Therefore, decitabine-induced expression of cell growth controlling genes such as NKX3.1 or PMEPA1 underlines the clinical applicability of decitabine in prostate tumors harboring wild type androgen receptor. Further analysis of DNA methylation within the PMEPA1 promoter downstream sequences suggests that methylation of SP1 binding sites may also contribute to the repression of PMEPA1 gene.

3. PMID 21720365
A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

4. PMID 21931279
A fundamental challenge in the post-genomics era is to understand how genetic variants can influence phenotypic variability and disease. Recent observations from a number of studies have highlighted a mechanism by which common genetic polymorphisms can influence DNA methylation, a major epigenetic silencing mechanism. We report that the alternative promoter of the human TRPC3 gene is regulated by allelic DNA methylation, dictated by the genotype of a single base pair polymorphism, rs13121031 located within the promoter CpG island. The common G allele is associated with high levels of methylation, while the less prevalent C allele is unmethylated. This methylation profile is observed in many tissue types, despite the expression of TRPC3 being restricted to brain and heart. TRPC3 is prominently expressed in the hindbrain, and a heterozygous brain sample showed modest skewing according to the allelic methylation, with preferential expression from the C allele. The TRPC3 gene encodes a transient receptor potential channel that has been implicated in cerebellar ataxia and heart hypertrophy. The genotype-frequencies of rs13121031 were determined in cohorts of ataxia patients and in individuals with cardiac hypertrophy. These analyses revealed a statistical trend for the rare unmethylated homozygous C genotype to be present at a higher frequency in idiopathic ataxia patients (Fisher's test p=0.06), but not in those patients with known mutations (Fisher's test p=0.55) or in individuals with heart disease (Fisher's test p=0.807), when compared to a control population. Our results suggest that the TRPC3 alternative promoter is a methylation quantitative-trait locus that may be involved in modulating the ataxia phenotype.

5. PMID 21152119
A global DNA hypomethylation might activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-Adenosylmethionine (SAM) serves as a major methyl donor in biological transmethylation events. The object of this study is to explore the influence of SAM on the status of methylation at the promoter of the oncogenes c-myc, H-ras and tumor-suppressor gene p16 (INK4a), as well as its inhibitory effect on cancer cells. The results indicated that SAM treatment inhibited cell growth in gastric cancer cells and colon cancer cells, and the inhibition efficiency was significantly higher than that in the normal cells. Under standard growth conditions, C-myc and H-ras promoters were hypomethylated in gastric cancer cells and colon cancer cells. SAM treatment resulted in a heavy methylation of these promoters, which consequently downregulated mRNA and protein levels. In contrast, there was no significant difference in mRNA and protein levels of p16 (INK4a) with and without SAM treatment. SAM can effectively inhibit the tumor cells growth by reversing the DNA hypomethylation on promoters of oncogenes, thus down-regulating their expression. With no influence on the expression of the tumor suppressor genes, such as P16, SAM could be used as a potential drug for cancer therapy.

6. PMID 21910919
A group of 160 patients with primary glioblastoma treated with radiotherapy and temozolomide was analyzed for the impact of O6-methly-guanly-methyl-transferase (MGMT)-promoter methylation as well as isocitrate dehydrogenase (IDH)1-mutational status. Unexpectedly, overall survival or progression-free survival were not longer in the group with methylated MGMT-promoter as compared to patients without that methylation. IDH-1 mutations were significantly associated with increased overall survival.

7. PMID 22325970
A hallmark of cancer is the paradoxical co-presence, in the same tumour, of local and global DNA hypomethylation together with the regional hypermethylation of certain genes. Due to the oncogenic role of these different DNA methylation alterations, two therapeutic strategies are possible: the use of DNA methylating agents (DMA, such as folate) to inhibit global or local DNA hypomethylation or the use of DNA hypomethylating agents (DHA, such as 5-aza-2-deoxycytidine) to abrogate the accumulation of hypermethylated genes. Here we explored the use of folate to treat gliomas in a mouse model, using tumours induced by either PDGF-B or Ras/Akt overexpression, or by ethylnitrosourea (ENU) treatment. Under all conditions the volume of tumours were significantly less in folate treated mice than in untreated mice. Quantitative methylated DNA immunoprecipitation (qMeDIP) and quantitative methylated specific PCR (qMSP) analysis of methylation status showed that folate treatment, increased the methylation level of DNA repeat elements in tumour and in colorectal tissue and that of MGMT and specific oncogenes (PDGF-B or survivin) in tumours (but not in colorectal tissue), but had no effect on the expression of tumour suppressor genes (p53, PTENorbax) in tumours or in colorectal tissue. This suggests that folate has anti-neoplastic effects in gliomas and that no preneoplastic or neoplastic alterations were observed in unaffected colorectal tissue in response to the potential tumourigenic effects of folate. Collectively, our data support the proposal to include folate as a promising adjuvant in the design of anti-glioma therapeutic protocols in clinical studies.

8. PMID 20591193
A hallmark of several human cancers is loss of heterozygosity (LOH) of chromosome 17p13. The same chromosomal region is also frequently hypermethylated in cancer. Although loss of 17p13 has been often associated with p53 genetic alteration or Hypermethylated in Cancer 1 (HIC1) gene hypermethylation, other tumor suppressor genes (TSGs) located in this region have critical roles in tumorigenesis. A novel TSG mapping on human chromosome 17p13.2 is KCTD11REN (KCTD11). We have recently demonstrated that KCTD11 expression is frequently lost in human medulloblastoma (MB), in part by LOH and in part by uncharacterized epigenetic events. Using a panel of human 177 tumor samples and their normal matching samples representing 18 different types of cancer, we show here that the down-regulation of KCTD11 protein level is a specific and a diffusely common event in tumorigenesis. Additionally, in order to characterize the regulatory regions in KCTD11 promoter, we identified a CpG island and several Sp1 binding sites on this promoter, and demonstrated that Sp1 transcription factor and DNA methylation contribute, at least in part, to regulate KCTD11 expression. Our findings identify KCTD11 as a widely down-regulated gene in human cancers, and provide a basis to understand how its expression might be deregulated in tumor cells.

9. PMID 22664488
. We analyzed breast cancer cell lines for differential expression of regulatory miRs to determine if loss of miR-mediated post-transcriptional regulation of DNMT3b represents the molecular mechanism that governs the overexpression of DNMT3b that drives the hypermethylation defect in breast cancer. MicroRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a, miR-148b) or are predicted (miR-26a, miR-26b, miR-203, miR-222) to regulate DNMT3b were examined among 10 hypermethylator and 6 non-hypermethylator breast cancer cell lines. Hypermethylator cell lines express diminished levels of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b, and miR-203 compared to non-hypermethylator cell lines. miR expression patterns correlate inversely with methylation-sensitive gene expression (r=-0.66, p=0.0056) and directly with the methylation status of these genes (r=0.72, p=0.002). To determine the mechanistic role of specific miRs in the dysregulation of DNMT3b among breast cancer cell lines, miR levels were modulated by transfection of pre-miR precursors for miR-148b, miR-26b, and miR-29c into hypermethylator cell lines (Hs578T, HCC1937, SUM185) and transfection of antagomirs directed against miR-148b, miR-26b, and miR-29c into non-hypermethylator cell lines (BT20, MDA-MB-415, MDA-MB-468). Antagomir-mediated knock-down of miR-148b, miR-29c, and miR-26b significantly increased DNMT3b mRNA in non-hypermethylator cell lines, and re-expression of miR-148b, miR-29c, and miR-26b following transfection of pre-miR precursors significantly reduced DNMT3b mRNA in hypermethylator cell lines. These findings strongly suggest that: i) post-transcriptional regulation of DNMT3b is combinatorial, ii) diminished expression of regulatory miRs contributes to DNMT3b overexpression, iii) re-expression of regulatory miRs reduces DNMT3b mRNA levels in hypermethylator breast cancer cell lines, and iv) down-regulation of regulatory miRs increases DNMT3b mRNA levels in non-hypermethylator breast cancer cell lines. In conlcusion, the molecular mechanism governing the DNMT3b-mediated hypermethylation defect in breast cancer cell lines involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.

10. PMID 20671051
A loss-of-function mutation of TET2, CBL and CEBPA has been implicated in the pathogenesis or leukaemic transformation of myeloproliferative neoplasm. As tumour suppressor genes may potentially be inactivated by promoter hypermethylation, the authors studied the methylation status of these genes in three cell lines and diagnostic marrow samples from 45 patients with myeloproliferative neoplasm (MPN) (essential thrombocythaemia, N=34; polycythaemia vera, N=7 and primary myelofibrosis, N=4) by methylation-specific PCR. TET2 was heterozygously methylated in MEG-01 and K562 but completely unmethylated in HEL. On the other hand, both CBL and CEBPA were completely unmethylated in all three cell lines. In the primary marrow samples, methylation of TET2 occurred in two (5.9%) patients with essential thrombocythaemia (4.4% of all patients), both without JAK2 V617 mutation, but not in polycythaemia vera or primary myelofibrosis. There was no association between TET2 methylation with the type of MPN (p=0.713). Hypermethylation of CBL or CEBPA was not detected in any patients. In summary, methylation of TET2, CBL and CEBPA is infrequent in MPN at diagnosis. The role of methylation of these genes at the time of leukaemic transformation warrants further study.

11. PMID 21879293
A new sensitive method for multiplex gene-specific methylation analysis was developed using a ligation-based approach combined with a TaqMan-based detection and readout employing universal reporter probes. The approach, termed methylation-specific Ligation Detection Reaction (msLDR), was applied to test 16 loci in 8 different colorectal cancer cells in parallel. These loci encode immune regulatory genes involved in T-cell and natural killer cell activation, whose silencing is associated with the development or progression of colorectal cancer. Parallel analysis of HLA-A, HLA-B, STAT1, B2M, LMP2, LMP7, PA28a, TAP1, TAP2, TAPBP, ULBP2 and ULBP3 by msLDR in eight colorectal cancer cell lines showed preferential methylation at the HLA-B, ULBP2 and ULBB3 loci, but not at the other loci. MsLDR was found to represent a suitable and sensitive method for the detection of distinct methylation patterns as validated by conventional bisulphite Sanger sequencing and COBRA analysis. Since gene silencing by epigenetic mechanisms plays a central role during transformation of a normal differentiated somatic cell into a cancer cell, characterization of the gene methylation status in tumours is a major topic not only in basic research, but also in clinical diagnostics. Due to a very simple workflow, msLDR is likely to be applicable to clinical samples and thus comprises a potential diagnostic tool for clinical purposes.

12. PMID 20224725
A novel, easy to perform PCR-based method employing specific DNA methylation biomarkers to detect B-cell neoplasms in a variety of B-cell lines and B lymphoblastic leukemia (B-ALL) patient specimens has been developed. This method detects as few as 5 B-ALL cells, or 1 B-ALL cell in 1,000,000 normal background blood cells using a single marker, DLC-1 gene CpG island (CGI) methylation. By adding two additional markers PCDHGA12 and RPIB9, over 80% of B-ALL cases were detected in patients' bone marrow and/or peripheral blood specimens. We have traced clinical B-ALL cases up to 10 years retrospectively and the DLC-1 methylation is correlated with patient clinical status. Thus, this epigenetic-based molecular method demonstrates its potential use in the diagnosis of B-cell neoplasia, in addition to traditional approach such as clinical features, morphology, immunophenotype, and genetic analysis.

13. PMID 22468166
A recent study reports that histone deacetylase (HDAC) inhibitors, AR42 and MS- 275, upregulated H3K4 methylation marks in prostate cancer cells, leading to transcriptional activation of genes including those associated with roles in tumor suppression and cell differentiation (1). Evidence suggests that the crosstalk between histone deacetylation and histone H3K4 methylation is attributable to the ability of these HDAC inhibitors to repress the JARID1 family of histone H3 lysine 4 demethylases (H3K4DMs), including RBP2, PLU-1, SMCX, and LSD1, through the downregulation of Sp1 expression. This demonstrates the complexity of the functional roles of HDACs in the regulation of histone modifications as well as the activation of epigenetically silenced gene expression. Equally important is the ability of HDAC inhibitors to transcriptionally suppress H3K4DM gene expression which has therapeutic implications, in that several H3K4DMs such as LSD1 and PLU-1 have been implicated in the pathogenesis of many types of malignancies.

14. PMID 21117024
A remarkable feature of HBV-associated HCC is male predominance. The cooperation of hepatitis B virus X protein (HBx) with androgen receptor (AR) signaling pathway has been documented to contribute to this dominance. HBx, a multifunctional viral regulator, has been documented to induce promoter hypermethylation and low expression of tumor suppressor genes via activation of DNA methyl-transferase (DNMT) in hepatocarcinogenesis. In prostate cancer, hypermethylation of AR promoter is associated with loss of AR expression. However, the relationship among HBx, DNMTs, the methylation status of AR and AR expression in HBV-associated HCC is still unknown. In this report, we found that HBx correlated with high levels of AR in HCC cases and induced AR expression by stimulating its transcription in liver cell lines. HBx correlated with high expression of DNMTs in HCC cases too. Both in vivo and in vitro, however, the expression of AR was not associated with its promoter methylation status, and the methylation status of AR was not regulated by DNMTs. AR expression is higher in peritumoral tissues than in tumors, as well as being higher in HBV-associated HCC than in HBV-negative cases. Therefore, HBx-induced high expression of AR plays a role during hepatocarcinogenesis, but is not involved with its promoter methylation or DNMTs. HBx-mediated DNMT deregulation is gene-specific, and the expression and methylated regulation of AR is tissue-specific.

15. PMID 18925662
A ring X chromosome is found in about 6% of patients with Turner syndrome (TS), often with mosaicism for a 45,X cell line. Patients with this karyotype are reported to have a higher incidence of a more severe phenotype including mental retardation. In fact, some studies have shown a correlation between this severity and the presence or absence of an intact and functional X inactivation center (XIST). However, the phenotype of the individuals with r(X) cannot be entirely defined in terms of their X-inactivation patterns. Nevertheless, a small group of these patients have been described to manifest clinical features reminiscent of the Kabuki syndrome. Here we present a female patient with clinical features resembling Kabuki syndrome and a mos 45,X/46,X,r(X) karyotype. Methylation analyses of polymorphic alleles of the androgen receptor gene showed that both alleles were unmethylated suggesting an active ring chromosome. A specific X chromosome array CGH was performed estimating the size of the ring to be 17 Mb, lacking the XIST gene, and including some genes with possible implications in the phenotype of the patient.

16. PMID 20825418
A subgroup of colorectal cancer (CRC) shows non-random accumulation of aberrant DNA methylation, so-called CpG island methylator phenotype (CIMP), which was associated with microsatellite instability and BRAF mutation. As just one group of methylation markers was suitable to extract CIMP+/CIMP-high, and had been commonly used in the "one-panel method", it had been unclear whether another cluster of CRC with DNA methylation accumulation exists in microsatellite-stable CRC. We therefore epigenotyped CRC by a comprehensive approach, that is, the two-way unsupervised hierarchical clustering method using highly quantitative methylation data by a single detection method, MALDI-TOF mass spectrometry, on novel regions selected genome-widely through methylated DNA immunoprecipitation on array analysis. CRC was clearly clustered into three DNA methylation epigenotypes, high-, intermediate- and low-methylation epigenotypes (HME, IME, and LME, respectively). Methylation markers are clustered into two distinct groups: Group-1 methylated specifically in HME and including most reported CIMP-related markers; and Group-2 methylated both in HME and IME. While suitable markers to detect a subgroup of CRC with intermediate methylation and correlation to KRAS mutation have been expected to be developed, our data indicated that a "two-panel method"; is necessary to properly classify CRC into three epigenotypes, the first panel to extract HME using Group-1 markers, and the second panel to divide the remaining into IME and LME using Group-2 markers. Here we review and compare our recent study and reported CRC classification methods by DNA methylation information, and propose the use of two panels of methylation markers as CRC classifiers. (Cancer Sci 2010); 101: xxx-xxx.

17. PMID 22695491
ABSTRACT: BACKGROUND: Aberrant promoter CpG island hypermethylation is associated with transcriptional silencing. Tumor suppressor genes are the key targets of hypermethylation in breast cancer and therefore may lead to malignancy by deregulation of cell growth and division. Our previous pilot study with pairs of malignant and normal breast tissues identified correlated methylation of two pairs of genes - HIN-1/RASSFIA and RIL/CDH13 - with expression of estrogen receptors (ER), progesterone receptors (PR), and HER2 (HER2). To determine the impact of methylation on clinical outcome, we have conducted a larger study with breast cancers for which time to first recurrence and overall survival are known. METHODS: Tumors from 193 patients with early stage breast cancer who received no adjuvant systemic therapy were used to analyze methylation levels of RIL, HIN-1, RASSF1A and CDH13 genes for associations with known predictive and prognostic factors and for impact on time to first recurrence and overall survival. RESULTS: In this study, we found that ER was associated with RASSF1A methylation (p < 0.001) and HIN-1 methylation (p = 0.002). PR was associated with RIL methylation (p = 0.012), HIN-1 (p = 0.002), and RASSF1A methylation (p = 0.019). Tumor size was associated with RIL and CDH13 methylation (both p = 0.002), and S-phase was associated with RIL methylation (p = 0.036). Only RASSF1A was associated with worse time to first recurrence (p = 0.045) and worse overall survival (p = 0.016) after adjusting for age, tumor size, S-phase, estrogen receptor and progesterone receptor. CONCLUSIONS: Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancers was associated with clinical characteristics, but only RASSF1A methylation was associated with time to first recurrence and overall survival. Our data suggest that RASSF1A methylation could be a potential prognostic biomarker.

18. PMID 22591756
ABSTRACT: BACKGROUND: DNA methylation of promoter-associated CpG islands of certain genes may play a role in the development of colorectal cancer. The MYOD-1 gene which is a muscle differentiation gene has been showed to be significantly methylated in colorectal cancer which, is an age related event. However the role of this gene in the colonic mucosa is not understood and whether methylation occurs in subjects without colon cancer. In this study, we have determined the frequency of methylation of the MYOD-1 gene in normal colonic mucosa and investigated to see if this is associated with established colorectal cancer risk factors primarily ageing. RESULTS: We analysed colonic mucosal biopsies in 218 normal individuals and demonstrated that in most individuals promoter hypermethylation was not quantified for MYOD-1. However, promoter hypermethylation increased significantly with age (p < 0.001 using regression analysis) and this was gender independent. We also showed that gene promoter methylation increased positively with an increase in waist to hip (WHR) ratio - the latter is also a known risk factor for colon cancer development. CONCLUSIONS: Our study suggests that promoter gene hypermethylation of the MYOD-1 gene increases significantly with age in normal individuals and thus may offer potential as a putative biomarker for colorectal cancer.

19. PMID 22695170
ABSTRACT: BACKGROUND: Hypermethylation of promotor CpG islands is a common mechanism that inactivates tumor suppressor genes in cancer. Genes belonging to the RASSF gene family have frequently been reported as epigenetically silenced by promotor methylation in human cancers. Two members of this gene family, RASSF1A and RASSF5A have been reported as methylated in neuroblastoma. Data from our previously performed genome-wide DNA methylation array analysis indicated that other members of the RASSF gene family are targeted by DNA methylation in neuroblastoma. RESULTS: In the current study, we found that several of the RASSF family genes (RASSF2, RASSF4, RASSF5, RASSF6, RASSF7, and RASSF10) to various degrees were methylated in neuroblastoma cell lines and primary tumors. In addition, several of the RASSF family genes showed low or absent mRNA expression in neuroblastoma cell lines. RASSF5 and RASSF6 were to various degrees methylated in a large portion of neuroblastoma tumors and RASSF7 was heavily methylated in most tumors. Further, CpG methylation sites in the CpG islands of some RASSF family members could be used to significantly discriminate between biological subgroups of neuroblastoma tumors. For example, RASSF5 methylation highly correlated to MYCN amplification and INRG stage M. Furthermore, high methylation of RASSF6 was correlated to unfavorable outcome, 1p deletion and MYCN amplification in our tumor material. In conclusion This study shows that several genes belonging to the RASSF gene family are methylated in neuroblastoma. The genes RASSF5, RASSF6 and RASSF7 stand out as the most promising candidate genes for further investigations in neuroblastoma.

20. PMID 22695536
ABSTRACT: BACKGROUND: Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. METHODS: The quantitative methylation analysis was performed using the SEQUENOM's EpiTYPERTM assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. CONCLUSIONS: The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis, which might improve prognosis and therapeutic management of the breast cancer patients.

21. PMID 22569290
ABSTRACT: INTRODUCTION: The chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as a tumor suppressor in a mouse model. The CHD5 locus at 1p36 is deleted, and its mutation has been detected in breast cancer. We, therefore, evaluated whether CHD5 plays a role in human breast cancer. METHODS: We screened mutations in 55 tumors, determined promoter methylation in 39 tumors, measured RNA expression in 90 tumors, analyzed protein expression in 289 tumors, and correlated expression changes with clinicopathological characteristics of breast cancer. Functional effects of CHD5 on cell proliferation, invasion and tumorigenesis were also tested. RESULTS: Although only one mutation was detected, CHD5 mRNA expression was significantly reduced, accompanied by frequent genomic deletion and promoter methylation, in breast cancer. The extent of methylation was significantly associated with reduced mRNA expression, and demethylating treatment restored CHD5 expression. Lower CHD5 mRNA levels correlated with lymph node metastasis (P = 0.026). CHD5 protein expression was also reduced in breast cancer, and lack of CHD5 expression significantly correlated with higher tumor stage, ER/PR-negativity, HER2 positivity, distant metastasis and worse patient survival (P = 0.01). Functionally, ectopic expression of CHD5 in breast cancer cells inhibited cell proliferation and invasion in vitro and tumorigenesis in nude mice. Consistent with the inhibition of invasion, CHD5 down-regulated mesenchymal markers vimentin, N-cadherin and ZEB1 in breast cancer cells. CONCLUSION: Down-regulation of CHD5, mediated at least in part by promoter methylation, contributes to the development and progression of human breast cancer.

22. PMID 22414206
ABSTRACT: In utero exposures to environmental factors may result in persistent epigenetic modifications affecting normal development and susceptibility to chronic diseases in later life. We explored the relationship between exposure of the growing fetus to maternal depression or antidepressants and DNA methylation at two differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. Aberrant DNA methylation at the IGF2 and neighboring H19 DMRs has been associated with deregulated IGF2 expression, childhood cancers and several chronic diseases during adulthood. Our study population is comprised of pregnant mothers and their newborns (n = 436), as part of the Newborn Epigenetics Study (NEST). A standardized questionnaire was completed and medical record data were abstracted to ascertain maternal depression and antidepressive drug use. DMR methylation levels in umbilical cord blood leukocytes were quantified using pyrosequencing. From the 436 newborns, laboratory data were obtained for 356 individuals at the IGF2 DMRs, and for 411 individuals at the H19 DMRs; about half of each group was African American or Caucasian. While overall no association between depression and methylation profiles was found, we observed a significant hypermethylation of the H19 DMRs in newborns of African American (n = 177) but not Caucasian (n = 168) mothers who reported the use of antidepressive drugs during pregnancy (ß = +6.89, p = 0.01). Of note, our data reveal a race-independent association between smoking during pregnancy and methylation at the IGF2 DMR (+3.05%, p = 0.01). In conclusion, our findings suggest a race-dependent response related to maternal use of antidepressants at one of the IGF2 DMRs in the offspring.

23. PMID 21988780
ABSTRACT: The genes encoding drug-metabolizing enzymes and transporters play an important role in maintaining the normal life processes of human body. Their disorder or defect will lead to the occurrence and development of various diseases. Currently, most of studies have focused on genetic variations in these genes, however, in the present study, we analyzed promoter methylation of 11 drug metabolism and transport genes in a cohort of nodular goiter and normal thyroid tissues using methylation-specific PCR (MSP). Our data first revealed a distinct methylation profiling in drug metabolism and transport genes between nodular goiter and normal thyroid tissues, particularly ABCB4, CYP1B1 and CYP24A1 and SLC1A2. Given these genes contribute to the development and progression of various diseases, such as multidrug resistance and tumorigenesis, these epigenetic events may thus play a critical role in the pathogenesis of nodular goiter.

24. PMID 21190186
ADAM15, a member of the A Disintegrin And Metalloproteinase (ADAM) family, is a membrane protein containing an adhesion domain that binds to a5ß1 integrin through a unique RGD domain. ADAM15, expressed by human normal colonocytes, is involved in epithelial wound healing and tissue remodeling in inflammatory bowel disease. The aims of our study were (i) to analyze ADAM15 expression in a series of colon carcinomas and paired normal mucosa and (ii) to integrate the spatial relationship of ADAM15 with its binding partners a5ß1 integrin, a mesenchymal marker, as well as with other adhesion molecules, a3ß1 integrin and E-cadherin. A series of 94 colon carcinomas of the non other specified category were graded according to the World Health Organization classification. Immunohistochemistry was performed on frozen tissue sections using antibodies directed to ADAM15, a5ß1 and a3ß1 integrins, and E-cadherin. ADAM15 was quantified at the mRNA level. Finally, promoter methylation of ADAM15 was examined as well as the microsatellite instability status (MSS/MSI). Thirty-six percent of colorectal carcinomas displayed a reduced expression of ADAM15 in cancer cells, confirmed at the mRNA level in most cases, without promoter methylation. ADAM15 down-regulation was associated with histologically poorly differentiated carcinomas. In addition, it was associated with the acquisition of a5ß1 by cancer cells and down-regulation of a3ß1 integrin and E-cadherin. Finally this profile that includes characteristic of epithelial to mesenchymal transition is a late progression event of colon cancer with a poor prognosis.

25. PMID 22427032
ARHI is a novel tumor suppressor gene located on chromosome 1p31. Downregulation of ARHI expression has been detected in many types of cancer. However, the effects of ARHI in gastric cancer remain unclear. The aim of this study was to identify the relationship between ARHI expression and gastric cancer clinicopathological features. In this study, 81 pT2 stage gastric cancer specimens were subclassified by pT2a and pT2b stage. ARHI mRNA and protein levels were evaluated by real-time PCR and western blot analysis, respectively. Methylation plays an important role in suppressor gene silencing. We utilized methylation-specific PCR to identify the status of CpG islands in the ARHI gene. We used immunohistochemistry to determine the expression of the protein and analyzed clinicopathological features. The levels of ARHI mRNA in gastric cancer were lower compared to normal tissues (P<0.01). Similarly, the levels of ARHI protein in the cancer specimens were lower (P<0.05). DNA hypermethylation was identified in 79.1% of gastric cancer specimens without ARHI expression. Immunohistochemistry results were significantly correlated with the pT2 category (P<0.05). The cumulative survival rate of patients with ARHI expression was significantly higher compared to those without ARHI expression (P<0.05). ARHI as a suppressor is not only an important factor in the pathogenesis of gastric cancer, but also a potential factor for tumor aggravation. ARHI expression in gastric cancer can be employed to indicate favorable prognosis for the disease.

26. PMID 18942711
Aberrant CpG island hypermethylation is a common finding of cancers, which might be detectable in the tissue or serum of affected patients. . Six of 7 genes had higher methylation rates in patients with ovarian cancer than in borderline malignancy or benign tumor (p<0.001). The methylation of SFRP1, SFRP2, SOX1 and LMX1A genes correlated with recurrence and overall survival of ovarian cancer patients. Combining the data for SFRP1, SFRP2 and SOX1 genes gave a relative risk for recurrence of 3.19 (p=0.013) in patients with at least one gene methylation, and combining the data for SFRP1, SOX1 and LMX1A gave an RR for cancer-related death of 6.09 (p=0.010). Methylation analysis of tissues and serum revealed a significant correlation (kappa values, 0.332-0.598) and a highly sensitivity and specificity rates (73.08 and 75%) as a screening marker. In conclusion, promoter hypermethylation of specific genes in critical pathways is common in ovarian cancer and has potential as a prognostic factor and a promising serum marker for early screening.

27. PMID 21918973
Aberrant DNA methylation and concomitant transcriptional silencing of death-associated protein kinase 1 (DAPK1) have been demonstrated to be key pathogenic events in chronic lymphocytic leukemia (CLL). In acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), however, the presence of elevated DNA methylation levels has been a matter of continued controversy. Several studies demonstrated highly variable frequencies of DAPK1 promoter methylation by the use of methylation-specific PCR (MSP). By quantitative high-resolution assessment, we demonstrate that aberrant DNA methylation is an extremely rare event in this region. We observed elevated levels just in one out of 246 (0.4%) AML patients, all 42 MDS patients were unmethylated. In conclusion, we present a refined DAPK1 methylation analysis in a large representative patient cohort of AML and MDS patients proofing almost complete absence of elevated DNA methylation. Our results highlight the importance of quantitative measurements for translational research questions on primary patient specimens, particularly.

28. PMID 20145141
Aberrant DNA methylation at CpG islands is thought to contribute to cancer initiation and progression, but mechanisms that establish and maintain DNA methylation status during tumorigenesis or normal development remain poorly understood. In this study, we used methyl-CpG immunoprecipitation to generate comparative DNA methylation profiles of healthy and malignant cells (acute leukemia and colorectal carcinoma) for human CpG islands across the genome. While searching for sequence patterns that characterize DNA methylation states, we discovered several nonredundant sequences in CpG islands that were resistant to aberrant de novo methylation in cancer and that resembled consensus binding sites for general transcription factors (TF). Comparing methylation profiles with global CpG island binding data for specific protein 1, nuclear respiratory factor 1, and yin-yang 1 revealed that their DNA binding activity in normal blood cells correlated strictly with an absence of de novo methylation in cancer. In addition, global evidence showed that binding of any of these TFs to their consensus motif depended on their co-occurrence with neighboring consensus motifs. In summary, our results had two major implications. First, they pointed to a major role for cooperative binding of TFs in maintaining the unmethylated status of CpG islands in health and disease. Second, our results suggest that the majority of de novo methylated CpG islands are characterized by the lack of sequence motif combinations and the absence of activating TF binding.

29. PMID 20733034
Aberrant DNA methylation commonly occurs in cancer cells where it has been implicated in the epigenetic silencing of tumor suppressor genes. Additional roles for DNA methylation, such as transcriptional activation, have been predicted but have yet to be clearly demonstrated. The BCL6 oncogene is implicated in the pathogenesis of germinal center-derived B cell lymphomas. We demonstrate that the intragenic CpG islands within the first intron of the human BCL6 locus were hypermethylated in lymphoma cells that expressed high amounts of BCL6 messenger RNA (mRNA). Inhibition of DNA methyltransferases decreased BCL6 mRNA abundance, suggesting a role for these methylated CpGs in positively regulating BCL6 transcription. The enhancer-blocking transcription factor CTCF bound to this intronic region in a methylation-sensitive manner. Depletion of CTCF by short hairpin RNA in neoplastic plasma cells that do not express BCL6 resulted in up-regulation of BCL6 transcription. These data indicate that BCL6 expression is maintained during lymphomagenesis in part through DNA methylation that prevents CTCF-mediated silencing.

30. PMID 21435086
Aberrant DNA methylation contributes to the malignant phenotype in virtually all types of cancer, including myeloid leukemia. We hypothesized that CpG island hypermethylation also occurs in juvenile myelomonocytic leukemia (JMML) and investigated whether it is associated with clinical, hematologic, or prognostic features. Based on quantitative measurements of DNA methylation in 127 JMML cases using mass spectrometry (MassARRAY), we identified 4 gene CpG islands with frequent hypermethylation: BMP4 (36% of patients), CALCA (54%), CDKN2B (22%), and RARB (13%). Hypermethylation was significantly associated with poor prognosis: when the methylation data were transformed into prognostic scores using a LASSO Cox regression model, the 5-year overall survival was 0.41 for patients in the top tertile of scores versus 0.72 in the lowest score tertile (P = .002). Among patients given allogeneic hematopoietic stem cell transplantation, the 5-year cumulative incidence of relapse was 0.52 in the highest versus 0.10 in the lowest score tertile (P = .007). In multivariate models, DNA methylation retained prognostic value independently of other clinical risk factors. Longitudinal analyses indicated that some cases acquired a more extensively methylated phenotype at relapse. In conclusion, our data suggest that a high-methylation phenotype characterizes an aggressive biologic variant of JMML and is an important molecular predictor of outcome.

31. PMID 21864931
Aberrant DNA methylation in T cells has been linked to pathogenesis of autoimmune diseases. To investigate genomic and gene-specific DNA methylation levels in CD4(+) T cells from patients with latent autoimmune diabetes in adults (LADA), and to investigate changes in the expression of genes that regulate methylation as well as the autoimmune-related gene FOXP3 in these patients. Global CD4(+) T cell DNA methylation was measured in 15 LADA patients and 11 healthy controls using a methylation quantification kit. mRNA levels of DNA methytransferases (DNMTs), methyl-DNA binding domain proteins (MBDs) and FOXP3 were measured by real time PCR. Methylation of a FOXP3 regulatory element region was determined by bisulphite genomic sequencing. Genomic DNA methylation in CD4(+) T cells from LADA patients was significantly increased compared to controls. DNMT3b mRNA levels were higher in CD4(+) T cells from LADA patients than in controls. DNMT3b expression positively correlated with global DNA methylation in LADA CD4(+) T cells. FOXP3 expression was decreased, and the FOXP3 promoter region was hypermethylated in CD4(+) T cells from LADA patients compared with controls. DNA methylation levels are altered in CD4(+) T cells from LADA patients, which may contribute to disease onset and progression by affecting the expression of autoimmune-related genes.

32. PMID 21255913
Aberrant DNA methylation is a common phenomenon in human cancer. The aims of this study were to investigate the methylation profiles of non-small cell lung cancer (NSCLC) in the Chinese population. Twenty tumor suppressor genes (TSGs) were determined of the methylation status using methylation-specific PCR in 78 paired NSCLC specimens and adjacent normal tissues, as well as in 110 Stage I/II NSCLC and 50 cancer-free plasmas. The results showed that, nine genes (APC, CDH13, KLK10, DLEC1, RASSF1A, EFEMP1, SFRP1, RAR? and p16(INK4A)) demonstrated a significantly higher frequency of methylation in NSCLC compared with the normal tissues (P?0.001), while the others (RUNX3, hMLH1, DAPK, BRCA1, p14(ARF), MGMT, NORE1A, FHIT, CMTM3, LSAMP and OPCML) showed relatively low sensitivity or specificity. Furthermore, methylation of multiple genes was more frequentin cancerous tissue, CpG island methylator phenotype positive (CIMP+) cases were detected in 65.38% of (51/78) NSCLC while only in 1.28% (1/78) of adjacent normal tissues (P<0.001), and CIMP+ was associated with advanced stage (P=0.017), lymphatic metastasis (P=0.001) and adverse 2-year progression-free survival (P=0.027). The nine genes validated in tissues also showed a significantly higher frequency of tumor-specific hypermethylation in NSCLC plasma, as compared with the cancer-free plasmas, and a 5-gene set (APC, RASSF1A, CDH13, KLK10 and DLEC1) achieved a sensitivity of 83.64% and a specificity of 74.0% for cancer diagnosis. Thus, the results indicated that methylated alteration of multiple genes plays an important role in NSCLC pathogenesis and a panel of candidate epigenetic biomarkers for NSCLC detection in the Chinese population was identified.

33. PMID 21255913
Aberrant DNA methylation is a common phenomenon in human cancer. The aims of this study were to investigate the methylation profiles of non-small cell lung cancer (NSCLC) in the Chinese population. Twenty tumor suppressor genes (TSGs) were determined of the methylation status using methylation-specific PCR in 78 paired NSCLC specimens and adjacent normal tissues, as well as in 110 Stage I/II NSCLC and 50 cancer-free plasmas. The results showed that, nine genes (APC, CDH13, KLK10, DLEC1, RASSF1A, EFEMP1, SFRP1, RARß and p16(INK4A)) demonstrated a significantly higher frequency of methylation in NSCLC compared with the normal tissues (P=0.001), while the others (RUNX3, hMLH1, DAPK, BRCA1, p14(ARF), MGMT, NORE1A, FHIT, CMTM3, LSAMP and OPCML) showed relatively low sensitivity or specificity. Furthermore, methylation of multiple genes was more frequentin cancerous tissue, CpG island methylator phenotype positive (CIMP+) cases were detected in 65.38% of (51/78) NSCLC while only in 1.28% (1/78) of adjacent normal tissues (P<0.001), and CIMP+ was associated with advanced stage (P=0.017), lymphatic metastasis (P=0.001) and adverse 2-year progression-free survival (P=0.027). The nine genes validated in tissues also showed a significantly higher frequency of tumor-specific hypermethylation in NSCLC plasma, as compared with the cancer-free plasmas, and a 5-gene set (APC, RASSF1A, CDH13, KLK10 and DLEC1) achieved a sensitivity of 83.64% and a specificity of 74.0% for cancer diagnosis. Thus, the results indicated that methylated alteration of multiple genes plays an important role in NSCLC pathogenesis and a panel of candidate epigenetic biomarkers for NSCLC detection in the Chinese population was identified.

34. PMID 21129853
Aberrant DNA methylation is an early event in carcinogenesis and could serve as an additional molecular marker for the early diagnosis. The study was performed to investigate the promoter methylation of DAPK1, CDH13, and TWIST1 genes in uterine cervix lesions in an effort to examine whether this epigenetic event is involved in the process of cervical carcinogenesis, and whether it might be used as a molecular marker of cervical lesions. We conducted a retrospective study of 60 uterine cervix specimens, including 8 normal tissue samples, 10 benign lesions, 28 precancerous lesions (CIN1-3), and 14 squamous cell carcinomas (SCC). DNA hypermethylation was investigated using methylation-specific PCR. Immunohistochemistry was used to find p16(INK4A) overexpression. No hypermethylated promoters were detected in normal tissues and benign lesions. However, promoter hypermethylation of CDH13, TWIST1, and DAPK1 increased progressively from CIN1 to cancer, reaching values higher than 50% for cancer. DAPK1 and CDH13 displayed a significantly increased frequency of promoter methylation with progressively more severe cervical neoplasia (p<0.05). A statistically significant association was observed between p16(INK4A) expression and hypermethylation of DAPK1, TWIST1, and CDH13 (p<0.0001). Hypermethylation of CDH13, DAPK1, and TWIST1 promoters is an early event in the initiation and progression of cervix neoplasia. CDH13, DAPK1, and TWIST1 genes are potential biomarkers of cervical cancer risk.

35. PMID 22701537
Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARß2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARß2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy naïve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARß2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients.

36. PMID 22289497
Aberrant DNA methylation is frequent in the myeloid malignancies, particularly myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Promoter CpG methylation is correlated with silencing of tumor-suppressor genes (TSGs) in specific pathways that are also targets of mutation or other mechanisms of inactivation, and is thought to contribute to disease progression and poor prognosis. Epigenetic contributions to myeloid pathogenesis are more complex. Examples include TSG inactivation and oncogenic activation associated with formation of altered chromatin separate from CpG methylation. Epigenetic dysregulation occurs at multiple disease stages and at non-CpG island genomic sites, and also includes genomic hypomethylation and small RNA mechanisms of epigenetic regulation. Identification of recurrent mutations in potential epigenetic regulators, including TET2, IDH1, IDH2, DNMT3A, UTX, and ASXL1, were recently described. Accordingly, therapeutics directed towards epigenetic mechanisms including methylation inhibitors and histone deacetylase (HDAC) inhibitors have had some clinical success when applied to MDS and AML. However, identification of the underlying mechanisms associated with clinical responses and drug resistance remain enigmatic. Remarkably, in spite of significant molecular and translational progress, there are currently no epigenetic biomarkers in widespread clinical use. In this review, we explore the potential applications of epigenetic biomarker discovery, including epigenetic profiling for myeloid malignancy pathogenesis understanding, diagnostic classification, and development of effective treatment paradigms for these generally considered poor prognosis disorders.

37. PMID 22252584
Aberrant DNA methylation is frequently found during gastric carcinogenesis. Recently, we identified potential methylation markers important for Helicobacter pylori-induced gastric carcinogenesis using an Illumina methylation chip assay. In this study, we evaluated the candidate genes as markers for gastric cancer (GC) in a large Korean population. DNA methylation of PTPN6, MOS, DCC, CRK, and VAV1 was evaluated in non-neoplastic gastric specimens using quantitative methylation-specific PCR in patients with GC (n = 207) and their age- and gender-matched controls (n = 207). Methylation levels in 125 GC samples were also compared. H. pylori infection status was categorized as negative, active, or past infection according to the results of endoscopy-based tests (CLOtest, histology, and culture), H. pylori serology, and serum pepsinogen test. In the controls, active H. pylori infection increased methylation levels in DCC, CRK, MOS, and VAV1 but decreased methylation levels in PTPN6 (all p < 0.05); the methylation levels in MOS remained increased in patients with past H. pylori infection compared to H. pylori-negative subjects (p < 0.001). Methylation levels in MOS in non-neoplastic gastric mucosae increased in the presence of GC, regardless of H. pylori infection status (p < 0.01). Methylation levels in all genes but DCC decreased significantly in GC specimens compared to neoplastic gastric mucosae (p <; 0.01); however, methylation levels in GC tissues were not correlated with those in their background gastric mucosae. Hypomethylation of MOS in GC tissues was associated with tumour invasion, nodal metastasis, and undifferentiated histology (p < 0.05). To summarize, among the candidate genes, DNA methylation of MOS may reflect the duration of H. pylori exposure and may be a marker for the development of GC.

38. PMID 20131317
Aberrant DNA methylation is involved in colon carcinogenesis. Although the CpG island methylator phenotype (CIMP) is defined as a subset of colorectal cancers (CRCs) with remarkably high levels of DNA methylation, it is not known whether epigenetic processes are also involved in CIMP-negative tumors. We analyzed the DNA methylation profiles of 94 CRCs and their corresponding normal-appearing colonic mucosa with 11 different markers, including the five classical CIMP markers. The CIMP markers were frequently methylated in proximal CRCs (p < 0.01); however, RASSF1A methylation levels were significantly higher in distal CRCs, the majority of which are CIMP-negative (p < 0.05). Similarly, methylation levels of RASSF1A and SFRP1 in the normal-appearing mucosae of distal CRC cases were significantly higher than those in the proximal CRC cases (p <; 0.05). They were also positively correlated with age (RASSF1A, p < 0.01; SFRP1, p < 0.01). Microarray-based genome-wide DNA methylation analysis of 18 CRCs revealed that 168 genes and 720 genes were preferentially methylated in CIMP-negative distal CRCs and CIMP-positive CRCs, respectively. Interestingly, more than half of the hypermethylated genes in CIMP-negative distal CRCs were also methylated in the normal-appearing mucosae, indicating that hypermethylation in CIMP-negative distal CRCs is more closely associated with age-related methylation. By contrast, more than 60% of the hypermethylated genes in CIMP-positive proximal CRCs were cancer specific (p < 0.01). These data altogether suggest that CpG island promoters appear to be methylated in different ways depending on location, a finding which may imply the presence of different mechanisms for the acquisition of epigenetic changes during colon tumorigenesis.

39. PMID 22159596
Aberrant DNA methylation is responsible for the epigenetic silencing of genes associated with tumourigenesis and progression of cancer. In this study, we assessed the methylation status of eight genes in 49 snap-frozen primary breast tumours. Epigenetic alterations of 8 genes were analysed with methylation-specific polymerase chain reaction (MS-PCR) (DCR1, DAPK1, RASSF1A and DCR2) or methylation-sensitive high-resolution melting analysis (MS-HRM) (APC, MGMT, GSTP1 and PTEN). MS-HRM performance was validated by bisulfite pyrosequencing regarding the methylation levels of MGMT. Promoter methylation was observed in APC 54.34%, 40.4% DCR1, 37.5% DAPK1, 33.3% RASSF1A, 22.44% MGMT, 16.6% GSTP1, 6% PTEN and 0% DCR2 promoters, respectively. Interestingly, 37 out of 49 cases (75.5%) displayed aberrant promoter methylation in at least one gene. An association of MGMT promoter methylation with age and tumour grade was recorded. Moreover, a correlation with advanced T-category was elicited for GSTP1, RASSF1 and DAPK1 promoter methylation. Finally, concurrent methylation of several genes showed a marginal statistical relationship with N-category. We conclude that APC, DCR1, DAPK1 and RASSF1A promoter methylation represents a common event in breast cancer tumourigenesis. Our results suggest that GSTP1, RASSF1, DAPK1 and MGMT may be implicated in the acquisition of a more aggressive phenotype in breast cancer.

40. PMID 22366991
Aberrant DNA methylation occurs early and frequently in tumorigenesis. Identification of DNA methylation biomarkers is a field that provides potential for improving the clinical process of breast cancer diagnosis. We utilized a genome-wide technique, methylated DNA isolation assay (MeDIA), in combination with high-resolution CpG microarray analysis to identify hypermethylated genes in breast cancer. Among differentially methylated genes between tumor and adjacent normal tissues, 3 candidate genes (LHX2, WT1 and OTP) were finally selected through a step-wise filtering process and examined for methylation status in normal tissues, primary tumor, and paired adjacent normal-appearing tissues from 39 breast cancer patients. Based on the calculated cut-off values, all genes showed significantly higher frequencies of aberrant hypermethylation in primary tumors (43.6% for LHX2, 89.7% for WT1 and 100% for OTP, p<0.05) while frequencies were intermediate in paired adjacent normal tissues and absent in normal tissues. On further analysis, the methylation level in primary tumors was not significantly correlated with clinicopathological features. Interestingly, DNA methylation of a novel gene OTP was detected in adjacent normal tissues even 6 cm away from primary tumors, suggesting that OTP methylation may qualify as a biomarker for the early detection of breast cancer. In conclusion, we successfully identified a novel gene OTP frequently methylated in breast cancer by genome-wide screening. Our results suggest that the OTP gene may play a crucial role in breast carcinogenesis, although further clinical validation will be needed to evaluate the potential application of OTP in the early detection of breast cancer.

41. PMID 21916701
Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylation of E-cadherin, p16, and RAR-ß(2) genes in archived tumor tissues from incident, primary breast cancer cases in a population-based case-control study. Real-time methylation-specific PCR was performed on 803 paraffin-embedded samples; usual dietary intake was queried from a food frequency questionnaire. Unconditional logistic regression was used to derive adjusted odds ratios and 95% confidence intervals for likelihood of promoter methylation for high compared to low intake of those 1-carbon nutrients. Overall, in case-case comparisons, dietary intakes of folate, vitamins B(2), B(6), B(12), and methionine were not associated with likelihood of promoter methylation of E- cadherin, p16, and RAR-ß(2) for all cases combined or within strata defined by menopausal status and estrogen receptor status in this study. This finding, however, does not exclude the possibility that intake of such nutrients might have the ability to modulate promoter methylation in normal or premalignant (dysplastic) breast tissue.

42. PMID 18635238
Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.

43. PMID 21540640
Aberrant TGFß signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study has identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGF-beta signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (P=0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (P<; 0.05). Restoration of RunX1T1 inhibited cancer cell growth. Taken together, dysregulated TGFß/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis.

44. PMID 21435086
Aberrant activation of canonical Wnt signaling is a hallmark event in colorectal carcinogenesis. The Dickkopf-1 (DKK1) and Secreted Frizzled Related Protein 1 (SFRP1) genes encode extracellular inhibitors of Wnt signaling that are frequently silenced by promoter hypermethylation in colorectal cancer (CRC). These methylation events have been identified as prognostic markers of patient outcome and tumor subtype in several cancers but similar roles in CRC have not been comprehensively examined. In CRC, the microsatellite instability (MSI) subtype associates with favorable disease outcome but the molecular events that are responsible remain poorly understood. Consequently, we quantified promoter methylation status of the Wnt antagonist genes DKK1 and SFRP1 in a large population-based cohort of CRCs from Ontario (n = 549) and Newfoundland (n = 696) stratified by MSI status. We examined the association between methylation status and clinicopathological features including tumor MSI status and patient survival. DKK1 and SFRP1 were methylated in 13 and 95% of CRCs, respectively. In Ontario, DKK1 methylation was strongly associated with MSI tumors after adjustment for age, sex and tumor location [odds ratio (OR) = 13.7, 95% confidence interval (CI) = 7.8-24.2, P <; 0.001]. Conversely, SFRP1 methylation was inversely associated with MSI tumors after these adjustments (OR = 0.3, 95% CI = 0.1-0.9, P = 0.009). Similar results were obtained in Newfoundland. There were no independent associations with recurrence-free survival. This is the first large study to identify associations between Wnt antagonist promoter hypermethylation and CRC MSI subtype. These events provide insight into subtype-specific epigenetic mediation of Wnt signaling in CRC.

45. PMID 21982838
Aberrant activation of the Wnt signaling pathway is a major trait of many human cancers. Due to its vast implications in tumorigenesis and progression, the Wnt pathway has attracted considerable attention at several molecular levels, also with respect to developing novel cancer therapeutics. Indeed, research in Wnt biology has recently provided numerous clues, and evidence is accumulating that the secreted Wnt antagonist Dickkopf-related protein 3 (Dkk-3) and its regulators may constitute interesting therapeutic targets in the most important human cancers. Based on the currently available literature, we here review the knowledge on the biological role of Dkk-3 as an antagonist of the Wnt signaling pathway, the involvement of Dkk-3 in several stages of tumor development, the genetic and epigenetic mechanisms disrupting DKK3 gene function in cancerous cells, and the potential clinical value of Dkk-3 expression/DKK3 promoter methylation as a biomarker and molecular target in cancer diseases. In conclusion, Dkk-3 rapidly emerges as a key player in human cancer with auspicious tumor suppressive capacities, most of all affecting apoptosis and proliferation. Its gene expression is frequently downregulated by promoter methylation in almost any solid and hematological tumor entity. Clinically, evidence is accumulating of Dkk-3 being both a potential tumor biomarker and effective anti-cancer agent. Although further research is needed, re-establishing Dkk-3 expression in cancer cells holds promise as novel targeted molecular tumor therapy.

46. PMID 21873353
Aberrant activation of the Wnt/ß-catenin signaling axis is a prominent oncogenic mechanism in numerous cancers including cervical cancer. Wnt inhibitory factor-1 (WIF1) is a secreted protein that binds Wnt and antagonizes Wnt activity. While the WIF1 gene is characterized as a target for epigenetic silencing in some tumor types, WIF1 expression has not been examined in human cervical tissue and cervical cancer. Here, we show that WIF1 is unmethylated and its gene product is expressed in normal cervical epithelium and some cultured cervical tumor lines. In contrast, several cervical cancer lines contained dense CpG methylation within the WIF1 gene, and expression of both WIF1 transcript and protein was restored by culturing cells in the presence of the global DNA demethylating agent 5-aza-2'-deoxycytidine. Using single-molecule MAPit methylation footprinting, we observed differences in chromatin structure within the WIF1 promoter region between cell lines that express and those that do not express WIF1, consistent with transcriptional activity and repression, respectively. The WIF1 promoter was aberrantly methylated in ~60% (10 of 17) high-grade highly undifferentiated squamous cell cervical tumors examined, whereas paired normal tissue showed significantly lower levels of CpG methylation. WIF1 protein was not detectable by immunohistochemistry in tumors with quantitatively high levels of WIF1 methylation. Of note, WIF1 protein was not detectable in two of the seven unmethylated cervical tumors examined, suggesting other mechanisms may contribute WIF1 repression. Our findings establish the WIF1 gene as a frequent target for epigenetic silencing in squamous cell carcinoma of the cervix.

47. PMID 20676051
Aberrant expression of the MAD2 protein has been linked to chromosomal instability, malignant transformation and chemoresistance. Although reduced MAD2 expression is well recognised in human cancer cell lines, the mechanism(s) underlying its downregulation remain elusive. The objective of this study was to establish the impact of hypoxia on MAD2 expression and to investigate the potential role of aberrant promoter methylation as a possible mechanism of MAD2 downregulation. For this purpose, three ovarian cancer cell lines, displaying differing levels of MAD2, were treated with chromatin modifying drugs, pre and post-hypoxia exposure and a DHPLC analysis of DNA promoter methylation carried out. We show that hypoxia induces downregulation of MAD2 expression, independently of MAD2 promoter methylation. We also show no evidence of MAD2 promoter methylation in breast and prostate cancer cells or in breast cancer clinical material. While our findings provide no evidence for MAD2 promoter methylation, we show a concomitant upregulation of p21 with downregulation of MAD2 in hypoxia. Our in vitro results were also confirmed in an ovarian cancer tissue microarray (TMA), where a reciprocal staining of MAD2 and CAIX was found in 21/60 (35%) of tumours. In summary, MAD2 downregulation may be a crucial mechanism by which hypoxic cells become chemorefractory. This stems from our previous work where we demonstrated that MAD2 downregulation induces cellular senescence, a viable cellular fate, with resultant cellular resistance to paclitaxel. Moreover, MAD2 downregulation could play a central role in the induction of chemoresistance in hypoxia, a key tumour microenvironment associated with chemoresistance.

48. PMID 22649395
Aberrant gene methylation is often seen in thyroid cancer, a common endocrine malignancy. Tobacco smoking has been shown to be associated with aberrant gene methylation in several cancers, but its relationship with gene methylation in thyroid cancer has not been examined. In the present study, we investigated the relationship between smoking of patients and aberrant methylation of tumor suppressor genes for TIMP3, SLC5A8, death-associated protein kinase, and retinoic acid receptor ß2 (RARß2) in papillary thyroid cancer (PTC), the most common type of thyroid cancer. The promoter methylation status of these genes was analyzed using quantitative real-time methylation-specific PCR on bisulfite-treated genomic DNA isolated from tumor tissues and correlated with smoking history of the patients. Among the four genes, methylation of the RARß2 gene was significantly associated with smoking and other three genes showed a trend of association. Specifically, among the 138 patients investigated, 13/42 (31.0%) ever smokers vs. 10/96 (10.4%) never smokers harbored methylation of the RARß2 gene (P?=?0.003). This association was highly significant also in the subset of conventional variant PTC (P?=?0.005) and marginally significant in follicular variant PTC (P?=?0.06). The results demonstrate that smoking-associated aberrant methylation of the RARß2 gene is a specific molecular event that may represent an important mechanism in thyroid tumorigenesis in smokers.

49. PMID 22306672
Aberrant hypermethylation of CpG islands (CGIs) in hMLH1 promoter regions has been well known to play an important role in the tumorigenesis of human sporadic colorectal carcinoma (SCRC). In this study, bisulfite sequencing was performed to analyze the methylation variable positions (MVPs) profiles of hMLH1 promoter CGIs in 30 clinical SCRC patients, and further analysis was carried out to evaluate the associations between the CGI methylation and the clinicopathological features in SCRC. Among the 2 CGIs in the hMLH1 promoter, that is, CGI-I and CGI-II, 20% (6/30) and 13% (4/30) of the patients had methylated CGI-I and CGI-II, respectively. Suppressed expression of hMLH1was significantly correlated with methylation of CGI-I but not CGI-II. Further analysis of the MVP profiles of CGI-I showed that most of the MVPs were hypermethylated and others were poorly methylated or unmethylated. The profiles could be classified into at least 4 groups based on the methylation status of 3 MVPs at positions 21 to 23 in CGI-I. All 6 patients with methylated CGI-I belonged to group I. This result suggests that the above 3 MVPs in CGI-I should be a targeted region to further analyze the epigenetic features of hMLH1 in human SCRC. Our results further suggest that MVP profiling is useful for identifying the aberrantly methylated CGIs associated with suppressed gene expression.

50. PMID 19268989
Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

51. PMID 22109647
Aberrant inactivation of tumor suppressor genes by promoter hypermethylation has been recognized as a crucial step of tumor development and is related to aggressiveness and therapy resistance. To identify potential novel treatment strategies, we evaluated pharmacological genome demethylation for the increase of irradiation treatment effectiveness in head and neck squamous cell carcinoma (HNSCC) in this in vitro study. HNSCC cells were cultured with 2 different concentrations of 5-azacytidine (5-Aza) for 72 h, followed by a single fraction irradiation with 4 or 50 Gy, respectively. To show successful genome demethylation, the methylation status of the tumor suppressor gene hic1 (hypermethylated in cancer) promoter was analyzed by methylation specific PCR (MSP) as well as hic1 transcription by quantitative RT-PCR. Survival, apoptosis, viability, and migration of the tumor cells were analyzed as functional parameters of combined treatment response. After 5-Aza treatment the hic1 promoter was demethylated and gene transcription restored demonstrating genome demethylation. 5-Aza treated cells tended to be less viable and showed decreased survival indicated by lower colony numbers. Apoptosis and migration were not affected. The combined application of irradiation and 5-Aza significantly reduced survival compared to the single treatments. Accordingly, apoptosis was strongly increased after combined 4 Gy/5-Aza treatment. Viability was not additionally affected by combined treatment. Migration was affected weakly by combined high dosage irradiation/5-Aza treatment. Our data show that the combined application of 5-Aza and irradiation is effective in vitro. A demethylating concept prior to irradiation should be further evaluated for its potential to reduce irradiation resistance.

52. PMID 22038115
Aberrant methylation of CpG islands in the promoter region of genes is a common epigenetic phenomenon found in early cancers. Therefore conducting genome-scale methylation studies will enhance our understanding of the epigenetic etiology behind carcinogenesis by providing reliable biomarkers for early detection of cancer. To discover novel hypermethylated genes in colorectal cancer by genome-wide search, we first defined a subset of genes epigenetically reactivated in colon cancer cells after treatment with a demethylating agent. Next, we identified another subset of genes with relatively down-regulated expression patterns in colorectal primary tumors when compared with normal appearing-adjacent regions. Among 29 genes obtained by cross-comparison of the two gene-sets, we subsequently selected, through stepwise subtraction processes, two novel genes, GABRA1 and LAMA2, as methylation targets in colorectal cancer. For clinical validation pyrosequencing was used to assess methylation in 134 matched tissue samples from CRC patients. Aberrant methylation at target CpG sites in GABRA1 and LAMA2 was observed with high frequency in tumor tissues (92.5% and 80.6%, respectively), while less frequently in matched tumor-adjacent normal tissues (33.6% for GABRA1 and 13.4% for LAMA2). Methylation levels in primary tumors were not significantly correlated with clinico-pathological features including age, sex, survival and TNM stage. Additionally, we found that ectopic overexpression of GABRA1 in colon cancer cell lines resulted in strong inhibition of cell growth.

53. PMID 21127944
Aberrant methylation of CpG islands in the promoter regions of tumour cells results in loss of gene function. In addition to genetic lesions, changes in the methylation profile of the promoters may be considered a factor for tumour-specific aberrant expression of the genes.We investigated the methylation status of E-cadherin gene (CDH1) promoter in low-grade glioma and correlated it with clinical outcome. Eighty-four cases of low-grade glioma (43 diffuse astrocytomas, 27 oligodendrogliomas and 14 oligoastrocytomas) with assessable paraffin-embedded tumour blocks and normal brain tissue, derived from non-cancerous tissue adjacent to tumour and commercially normal brain tissue, were collected, from which we determined CDH1 promoter methylation status and E-cadherin protein expression by methylation-specific polymerase chain reaction (MSP) and immunohistochemistry, respectively. CDH1 promoter was found hypermethylated in 54 out of 84 low grade gliomas (64%) compared with 84 normal brain tissue. CDH1 hypermethylation was found in 65% astrocytomas, 66% oligodendrogliomas and 57% oligoastrocytomas. A significant correlation between hypermethylation status, patient survival and progression-free survival was found (P = 0.04). Survival and progression-free survival were lower in patients with hypermethylated CDH1 promoter. We found that 15 astrocytomas, 9 oligodendrogliomas and 6 oligoastrocytomas were immunoreactive for E-cadherin. The incidence of loss of immunoreactivity for E-cadherin decreased significantly with age, overall survival and progression-free survival (P = 0.001, Kaplan-Meier test). We have demonstrated that CDH1 promoter hypermethylation significantly associated with down-regulated E-cadherin expression and overall survival of patients. This may have a bearing on the prognosis of low-grade glioma.

54. PMID 21617854
Aberrant methylation of gene promoters and corresponding loss of gene expression plays a critical role in the initiation and progression of colorectal cancer. An IL-6-type cytokine receptor, leukemia inhibitory factor receptor (LIFR), is a component of cell-surface receptor complexes for multifunctional cytokines such as LIF. Herein, we report that LIFR is methylated in human colon cancer. LIFR promoter was methylated in primary tumor tissues with high frequency (65%, 52/80). Quantitative methylation-specific PCR (TaqMan-MSP) demonstrated differential promoter methylation of LIFR in primary colorectal cancer tissues as compared to normal colon tissues (5%, 4/80). LIFR methylation was not detectable in 13 normal colon mucosa samples obtained from patients without cancer. The mRNA expression of LIFR was significantly down-regulated in colon cancer tissues as compared to corresponding normal tissues. A strong expression of LIFR protein was observed in all non-malignant normal and adjacent normal colon mucosa tissues whereas down-regulated LIFR protein expression was observed in primary tumors. These results demonstrate that cancer-specific methylation and a specific decrease of LIFR expression are a common inactivation event in colon cancer development.

55. PMID 21776373
Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies thepathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.

56. PMID 21864295
Aberrant methylation of promoter CpG islands is a major inactivation mechanism of tumour-related genes that play a crucial role in the progression of silencing in human cancers, including HCC (hepatocellular carcinoma). We have examined the promoter methylation status of five important DNA damage response genes in fresh-frozen HCC tissues and cell lines, as well as the possible correlation between methylation patterns and clinical features of the carcinoma. Promoter methylation status of RASSF1A (Ras association domain family 1), CHFR (checkpoint with forkhead and ring finger domains), GSTP1 (glutathione-S-transferase-pi gene), MGMT [O(6)-methylguanine-DNA methyltransferase] and hMLH1 (human mutL homologue 1) were examined by the MSP (methylation-specific PCR) in 70 HCC tissues and five HCC cell lines. The mRNA expression levels of these genes were measured by RT-PCR (reverse transcription-PCR). Methylation frequencies of these genes tested in HCC were 54 (78%) for RASSF1A, 30 (43%) for CHFR, 26 (38%) for GSTP1 and 22 (32%) for MGMT. No hypermethylation was detected for hMLH1 in any case of HCC or HCC cell lines. Moreover, promoter hypermethylation of RASSF1A, CHFR and GSTP1 in both HepG2 and SNU398 cells, and hypermethylation of MGMT in Huh7 cells, were detected. Treatment of three cell lines with 5Aza-dC (5-aza-20-deoxycytidine) restored or increased the expression of these genes, implicating aberrant DNA methylation in transcriptional silencing. Hypermethylation of RASSF1A and patient age were significantly associated. CHFR methylation status showed a statistically significant correlation with HCC progression. Methylation of the RASSF1A, CHFR, GSTP1 and MGMT genes seem therefore to play an important role in the pathogenesis of HCC. These epigenetic changes may have prognostic importance for patients with HCC.

57. PMID 20113832
Aberrant methylation of promoter CpG islands is associated with transcriptional inactivation of tumor-suppressor genes in cancer. TFPI2, a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor-suppressor gene from genome-wide screening for aberrant methylation, using a microarray combined with the methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dCyd) in various types of tumors. We assessed the methylation status of TFPI2 and investigated its expression pattern in human primary gastric cancer (GC) tissues and in GC cell lines. Hypermethylation of the promoter CpG island, which was observed in more or less all of GC cell lines, was prevalent in a high proportion of primary GC tissues (15/18, or 83%), compared with noncancerous (4/18, or 22%) or normal (0/3, or 0%) stomach tissues, and expression of TFPI2 mRNA was reduced in 7 of the 17 primary GC tissues (41%). Moreover, immunohistochemical analyses showed decreased levels of TFPI-2 protein, compared with adjacent noncancerous tissues in 8 of the 20 primary GC tissues examined (40%). TFPI2 mRNA expression was restored in gene-silenced GC cells after treatment with 5-aza-dCyd. Aberrant methylation of TFPI2 promoter CpG island occurred not only in GC cells but also in primary GC tissues at a high frequency, suggesting that epigenetic silencing of TFPI2 may contribute to gastric carcinogenesis.

58. PMID 21288129
Aberrant methylation of promoter CpG islands is known to be a major inactivation mechanism of the tumor-related genes including DNA repair genes. The objective of this study was to determine the frequency of promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene as a DNA repair gene in nonsmall cell lung cancer (NSCLC) and to analyze the correlation with clinicopathological parameters including age, gender, smoking status, histological subtype, and clinical stage. Eighty patients with NSCLC were included in this study. The analysis of DNA methylation was performed on formalin-fixed, paraffin-embedded lung cancer tissues. Following DNA isolation and bisulfite treatment, DNA methylation was analyzed by methylation-specific real-time polymerase chain reaction. MGMT promoter methylation was detected in 51 of 80 (64%) NSCLC patients. There was a significant correlation between MGMT methylation and tumor stage (p?=?0.01). The frequencies of the promoter methylation of MGMT gene in smokers and older patients were higher than in their counterparts. In conclusion, the present study provides strong evidence for a higher frequency of promoter methylation of the MGMT gene in NSCLC, indicating that it is a common event during the carcinogenesis of NSCLC.

59. PMID 21109973
Aberrant methylation of promoter regions associated with gene silencing is one of the major mechanisms underlying the inactivation of tumor suppressor genes in carcinogenesis. Previous studies have proposed that methylated DNA from tumor cells is released into the circulation and might be widely used as a marker for non-invasive tumor detection. Catalytic activities of folate metabolism-related enzymes and adequate synthesis of methyl donors are important elements for the cellular methylation reaction. In the present study, we sought to determine the following: i) genotype frequencies of MTHFR and MTR involved in folate metabolism in cases and cancer-free controls; and ii) the methylation status of three candidate genes (p16INK4A, p73 and hMLH1) in plasma related to the folate and homocysteine levels. From genotype frequency analysis, individuals homozygous for the MTHFR 677TT genotype had a significantly reduced risk of developing colorectal cancer compared with those harboring the MTHFR 677CC genotype (OR, 0.206; 95% CI, 0.070-0.604; P=0.005), and had a lower plasma folate concentration than those with the MTHFR 677CC+CT genotype (P<0.05). Using methylation-specific PCR, p73 was shown to be more frequently methylated in the high folate group [50% (8 of 16)] than in the medium [16.7% (3 of 18)] or low folate subgroups [11.1% (2 of 18)]. In conclusion, subjects with the variant MTHFR 677TT genotype appeared to have a significantly lower risk for colorectal cancer than those with the MTHFR 677CC genotype, and the methylation status of circulating p73 genomic DNA was substantially altered by the plasma folate level.

60. PMID 19268989
Aberrant methylation of the promoter CpG island of human genes is an alternative gene inactivation mechanisms that contributes to the carcinogenesis of human tumors. We tried to determine the methylation status and its impact on the expression of two tumor related genes Casp-8 and Rb1 in 103 bladder tumor tissues and 48 control paraffin-embedded tissues by using MSP-PCR and SQRT-PCR. Of the patients, 19.4% for Casp-8 and 28.2% for Rb1 showed methylation in bladder cancer. There were significant differences between patients and healthy controls in methylation of Rb1 (p = 0.001) and Casp-8 (p = 0.008) and especially when both genes methylated (p = 0.004). Methylation of Casp-8 has mostly been taken places in patients with age >60 years (p = 0.013) whereas methylation of Rb1 has taken place in age >60 (p = 0.018) as well as in patients age <60 (p = 0.027). Patients with methylated of both genes with stage T2 showed an increasing risk of 4.75 fold (95% CI = 2.87-7.85, p = 0.00) and for stage T3, 23.50 fold (95% CI = 6.05-91.21, p = 0.00) of bladder cancer. Smoking showed a high significant effect on methylation (p = 0.00 in compare to non-smoker patients), especially in those with pack-years more than 44.7 (OR = 3.53, 95% CI = 1.69-7.35, p = 0.001). The risk of bladder cancer was marginally associated in drinker patients (OR = 1.78, 95% CI = 1.42-2.24, p = 0.010) featuring both genes methylated, especially in those patients consumed alcohol units>30 per week (OR = 4.57, 95% CI = 2.38-8.80, p = 0.000). Significant reduction in expression has been detected in patients with methylated Rb1 (p = 0.00) and Casp-8 (p = 0.03). These results suggest that age, smoking and drinking will increase the probability of methylation of these genes and consequently increased risk of developing of bladder cancer to higher stages of disease. Interestingly, it has been deduced that methylation by itself maybe significantly have a role on reducing the expression ofRb1, but it seems that methylation along with risk factors lead to decrease the expression of Casp-8. Methylation of Rb1 can be considered as one of prognosis indicator for progression and development bladder cancer.

61. PMID 20112504
Aberrant methylation of tumor suppressor gene promoters has been extensively investigated in cervical cancer. Transcriptional silencing, as a main consequence of hypermethylation of CpG islands, is the predominant mechanism of p16(INK4a) and E-cadherin gene inactivation in malignant epithelial tumors. This study was conducted to evaluate the promoter methylation status of p16(INK4a) and E-cadherin genes in 22 specimens of cervical carcinomas, four cervical cancer cell lines (HeLa, SiHa, Caski, C33A), and 20 human papillomavirus negative specimens, obtained from normal cervical swabs, using the methylation-specific PCR approach. Hypermethylation of the 5' CpG island of the p16(INK4a) and E-cadherin genes were found in 13 (59.1%) and 10 (45.5%) of 22 cervical cancer samples, respectively. Furthermore, our findings did not show any correlation between promoter methylation of p16(INK4a) and E-cadherin genes and clinicopathological parameters, including HPV infection, phenotypic distribution, and stage of the disease. However, hypermethylation of E-cadherin gene promoter appears to be age related in cervical cancer, whereas the frequency of aberrant methylation of p16(INK4a) gene promoter is unchanged according to the age of patients. Thus, caution must be made to use these markers in the diagnosis of cervical cancer. However, dietary or pharmaceutical agents that can inhibit these epigenetic events may prevent or delay the development of cervical cancer.

62. PMID 21801145
Aberrant methylation of tumor suppressor genes (TSG) is an important epigenetic event in cancer, including multiple myeloma (MM). Interleukin-6 (IL-6), which plays a significant role in the pathogenesis of MM, also regulates DNA methylation. However, attempts to bring IL-6 blockade to the clinic have had limited success. We hypothesize that IL-6 regulation of hypermethylation may be an important pathway leading to rational chemotherapeutic/anti-IL-6 combinations. We first studied the correlation of IL-6 expression and dependence in MM cell lines: U266B1, RPMI8226, and KAS6/1. We confirmed that KAS6/1 is IL-6-dependent whereas U266B1 and RPMI8226 cells are IL-6-independent and that blocking IL-6 inhibited the growth of U266B1 (36% inhibition; p<0.05) and KAS6/1 (68% inhibition; p<0.01), but not the RPMI8226 cells. Using RT-PCR, we showed that U266B1 cells express IL-6, but RPMI8226 and KAS6/1 cells do not. This IL-6 expression pattern correlates with the anti-IL-6 inhibition findings. To correlate IL-6 sensitivity with hypermethylation of TSG, we investigated promoter methylation of CDH1 and DcR1. We found that the promoter of DcR1 and CDH1 is methylated in U266B1 cells and un-methylated in RPMI8226 cells. Furthermore, the DcR1 promoter was un-methylated in KAS6/1 cells. These data support our hypothesis that an IL-6-dependent pathway may regulate hypermethylation of TSG in MM. Newer chemotherapeutic agents that affect methylation are being studied in combination with IL-6 blockade.

63. PMID 21152877
Aberrant promoter hypermethylation (methylation) is an epigenetic change that silences the expression of crucial genes, thus inactivating the apoptotic pathway in various cancers. Inactivation of the apoptotic pathway has been considered to be associated with chemoresistance. The objective of the present study was to clarify the effect of the methylation of the apoptosis-related genes, Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) and death-associated protein kinase (DAPK), on the response to chemotherapy in metastatic or recurrent gastric cancers. Tumor samples were obtained from 80 gastric cancer patients who were treated with fluoropyrimidine-based chemotherapy for distant metastatic or recurrent disease, after surgical resection of the primary tumor. The methylation status of the apoptosis-related genes, BNIP3 and DAPK, was investigated by methylation-specific PCR. Methylation in BNIP3 was detected in 31 tumors (39%) and in DAPK in 33 tumors (41%). There was no correlation between the methylation status of BNIP3 and that of DAPK. The response rate was significantly lower in patients with methylation of DAPK, than in those without (21 vs. 49% p=0.012). Progression-free survival time (PFS) was shorter in patients with methylation of DAPK than in those without (p=0.007). The overall survival time (OS) was shorter in patients with methylation of BNIP3 than in those without (p=0.031). The response rate was significantly lower in patients with methylation of either DAPK or BNIP3, or both, than in those without methylation (p=0.003). PFS and OS were significantly shorter in patients with methylation of either or both of these genes than in those without (p=0.002, p=0.001). The methylation of BNIP3 and DAPK can predict lower response to chemotherapy and poor prognosis in gastric cancer.

64. PMID 21922274
Aberrant promoter hypermethylation of cancer associated genes occur frequently during carcinogenesis and may serve as a cancer biomarker. The aim of this study was to investigate the occurrence and relevance of promoter methylation of the tumor suppressor DAPK-1, APAF-1 () and SPARC in relation to different pathological stages and histological grades of tumor progression that might act as possible independent prognostic factor in the susceptibility towards renal cell carcinoma (RCC) in North Indian population. Three tumor suppressor gene promoters namely APAF-1, DAPK-1 and SPARC were assessed by methylation-specific PCR (MS-PCR) in 196 primarily resected renal cell tumors paired with the corresponding normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters, pathological stage and Fuhrman nuclear grade of RCC. Significant differences in methylation frequency among the four subtypes of renal tumors were found for APAF-1 (p < 0.001), DAPK-1 (p < 0.001) and SPARC (p = 0.182), when compared with the corresponding normal tissue. Male subjects showed stronger association of methylation frequency of all the three genes with RCC than the female subjects. Additionally, higher frequency of APAF-1, DAPK-1 and SPARC promoter methylation were directly correlated with higher tumor stage (p (trend) < 0.001). Higher frequency of promoter methylation of APAF-1 and SPARC were also associated with higher nuclear grade (p < 0.001 and p = 0.036, respectively). This gene panel might contribute to a more optimal diagnostic coverage and information, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

65. PMID 17965626
Aberrant promoter methylation is an epigenetic mechanism for silencing tumor suppressor genes (TSG), and is also a biomarker for early cancer diagnosis and prognosis prediction. Recently, we and others identified DLC1 (ARHGAP7) as a functional TSG frequently methylated in multiple carcinomas. Here, we further uncovered DLC1 as one of the up-regulated genes in lymphoma cell lines after pharmacologic demethylation with 5-aza-2'-deoxycytidine (Aza). Transcriptional silencing and methylation of DLC1 was detected in most Hodgkin (HL) and non-Hodgkin lymphoma (NHL) cell lines, including 4/6 Hodgkin, 4/4 nasal NK/T-cell, 6/6 Burkitt and 5/5 diffuse large B-cell lymphoma cell lines. Aza treatment led to DLC1 promoter demethylation and transcriptional reactivation in silenced cell lines, indicating a methylation-mediated silencing. Aberrant methylation was further detected in 44% (14/37) Hodgkin, 77% (34/44) nasal NK/T-cell and 60-90% of various types of primary NHLs, but not in any normal lymph node or PBMC sample, and is thus tumor-specific. Analysis of microdissected Hodgkin/Reed-Sternberg (HRS) cells from HL cases confirmed the site of methylation as tumor cells. Moreover, DLC1 methylation was detected in 4/14 (29%) serum samples from HL patients. Our results indicate that DLC1 methylation is a frequent event in multiple lymphomagenesis and could serve as a tumor-specific biomarker for future lymphoma diagnosis.

66. PMID 21801466
Aberrations in DNA methylation patterns have been reported to be involved in driving changes in the expression of numerous genes during carcinogenesis and have become promising targets for chemopreventive action of natural compounds. In the present study, we investigated the effects of all-trans retinoic acid (ATRA), vitamin D3 and resveratrol alone and in combination with adenosine analogues, 2-chloro-2'-deoxyadenosine (2CdA) and 9-ß-d-arabinosyl-2-fluoroadenine (F-ara-A), on the methylation and expression of phosphatase and tensin homologue (PTEN) tumour suppressor gene in MCF-7 and MDA-MB-231 breast cancer cells. The present results showed that in non-invasive MCF-7 cells, ATRA, vitamin D3 and resveratrol possess high efficacy in the reduction of PTEN promoter methylation. It was associated with PTEN induction as well as DNA methyltransferase down-regulation and p21 up-regulation after treatments with vitamin D3 and resveratrol, suggesting a complex regulation of the DNA methylation machinery. Vitamin D3 and resveratrol improved the inhibitory effects of 2CdA and F-ara-A on PTEN methylation in MCF-7 cells; however, only the combined action of vitamin D3 and 2CdA boosted the induction of PTEN expression, suggesting a cooperation of these compounds in additional processes driving changes in PTEN expression. In contrast, in highly invasive MDA-MB-231 cells, only vitamin D3 reduced PTEN methylation and induced its expression without notable effects in combined treatments. The present results suggest that natural compounds can find application in epigenetic anticancer therapy aimed at inhibition of promoter methylation of tumour suppressor genes and induction of their expression at early stages of carcinogenesis.

67. PMID 22402438
Aberrations in the methylation status of noncoding genomic repeat DNA sequences and specific gene promoter region are important epigenetic events in melanoma progression. Promoter methylation status in long interspersed nucleotide element-1 (LINE-1) and absent in melanoma-1 (AIM1;?6q21) associated with melanoma progression and disease outcome was assessed. LINE-1 and AIM1 methylation status was assessed in paraffin-embedded archival tissue (PEAT; n=133) and in melanoma patients' serum (n=56). LINE-1 U-Index (hypomethylation) and AIM1 were analyzed in microdissected melanoma PEAT sections. The LINE-1 U-Index of melanoma (n=100) was significantly higher than that of normal skin (n=14) and nevi (n=12; P=0.0004). LINE-1 U-Index level was elevated with increasing American Joint Committee on Cancer (AJCC) stage (P<0.0001). AIM1 promoter hypermethylation was found in higher frequency (P=0.005) in metastatic melanoma (65%) than in primary melanomas (38%). When analyzed, high LINE-1 U-Index and/or AIM1 methylation in melanomas were associated with disease-free survival (DFS) and overall survival (OS) in stage I/II patients (P=0.017 and 0.027, respectively). In multivariate analysis, melanoma AIM1 methylation status was a significant prognostic factor of OS (P=0.032). Furthermore, serum unmethylated LINE-1 was at higher levels in both stage III (n=20) and stage IV (n=36) patients compared with healthy donors (n=14; P=0.022). Circulating methylated AIM1 was detected in patients' serum and was predictive of OS in stage IV patients (P=0.009). LINE-1 hypomethylation and AIM1 hypermethylation have prognostic utility in both melanoma patients' tumors and serum.

68. PMID 22288719
Abstract BIK (bcl2-interacting killer) is the founding member of the BH3-only bcl-2 family of pro-apoptotic proteins, which is suppressed in various cancers. In multiple myeloma (MM), BIK has been shown to be epigenetically silenced in vitro, but there is a lack of clinical data. We investigated the CpG methylation status of the BIK promoter in a well-characterized clinical series of patients with MM and investigated its clinical relevance. Forty patients with MM (21 male, 19 female; mean age 66) were studied. According to the International Staging System (ISS) they were classified as 16 patients with stage I, 12 patients with stage II and 12 patients with stage III disease. Methylation in the BIK CpG island was assessed by methylation-specific polymerase chain reaction (MSP) assay. Logistic regression analysis was used to investigate associations between gene methylation and age, ISS stage, performance status, extramedullary disease, bone disease, anemia (hemoglobin =10 mg/dL), serum albumin, ß(2)-microglobulin level and relapsed/refractory disease. Methylation in the BIK CpG island was detected in 16 patients (40%), with a trend favoring male gender (odds ratio [OR] =?3.08, p =?0.09) and development of bone disease and extramedullary disease (OR =?1.6, p =?0.35 and OR =?3, p =?0.14, respectively). Patients with MM with methylated BIK CpG island had a statistically significant risk for disease evolution to relapsed/refractory disease (OR =?5.4, p =?0.03). This study provides clinical evidence that methylation-induced transcriptional silencing of the BIK pro-apoptotic gene may occur in MM, which might serve as a predictor of the development of relapsed/refractory MM. These findings warrant validation in larger cohorts of patients and suggest therapeutic utility for agents that enhance BIK expression.

69. PMID 22345380
Abstract:RATIONALE:The epigenetic basis for human asthma is not well-studied, particularly among older adults.OBJECTIVE:To investigate the methylation profiles in sputum DNA among older adults with asthma, using a population of smokers.METHODS:This was a cross-sectional study using the Lovelace Smokers Cohort, a population of former and current smokers aged = 40 years in New Mexico. 184 smokers with asthma were compared to 511 smoker controls with a similar smoking history, after carefully excluding those with Chronic Obstructive Pulmonary Disease. Environmental exposures were assessed by a standard questionnaire. Post-bronchodilator spirometry was performed. Induced sputum was analyzed for the methylation prevalence of twelve selected asthma-related genes using nested methylation specific polymerase chain reaction assay.RESULTS:Asthma was associated with a greater number of methylated genes and specifically methylated Protocadherin-20 gene in sputum DNA, compared to controls with a similar smoking history. These associations remained significant after adjustment for covariates as well as Bonferroni correction. A synergistic interaction was noted between two methylated genes (Protocadherin-20 and Paired box protein transcription factor-5a) in sputum DNA on the odds for asthma (p=0.009). Interestingly, the epigenetic-asthma associations were not explained by the environmental factors studied. Further, methylated genes in sputum DNA, including the Protocadherin-20 gene, identified a 'symptomatically more severe' asthma phenotype in a subgroup analysis.CONCLUSIONS:Asthma is associated with methylation of selected genes, such as Protocadherin-20 gene, in sputum DNA. If future studies establish causality, novel demethylating interventions to prevent and treat asthma among older smokers may be possible.

70. PMID 20198318
Abundant mucin production and MUC2 expression is the key feature of mucinous colorectal cancer (CRC). Although MUC2 gene methylation has been thought to play an important role in loss of MUC2 expression, the tissues are difficult to analyze because of the cellular heterogeneity of tissue samples. In the present study, we determined the role of region-specific methylation in the MUC2 promoter in MUC2 expression in CRC. Additionally, we optimized the conditions for quantification of methylation analysis in mucinous and non-mucinous CRC tissues. We identified two regions in MUC2 promoter, region A (-289 and -274) and region C (-193 and -160), that correlated with loss of MUC2 expression by comparing the methylation status in 13 CRC cell lines with no or low MUC2 expression and those in 4 cell lines with high MUC2 expression. To prove the correlation of MUC2 methylation status and loss of expression in CRC tissues, MUC2 methylation status in tumors needs to be determined. Since the critical CpG sites have been identified in cell lines by sequencing, a more rapid and sensitive methylation specific PCR (MSP) was used. We conducted MSP at 3 CpG sites (-289, -274, -193) in 19 mucinous and 34 non-mucinous CRC tissues because this analysis worked at only these sites in the preliminary cell line experiments. Our results showed that methylation status of mucinous CRC was significantly lower than that of non-mucinous CRC at 3 sites (-289; p=0.001, -274; p=0.013, -193; p=0.001), and correlated with high level of MUC2 expression as determined by immunohistochemistry. Besides, these results indicated that MUC2 expression and mucin contents decreased in accordance with the increase of methylation status. We concluded that low methylation status of MUC2 gene plays a predominant role in high level MUC2 expression in mucinous CRC.

71. PMID 21836485
Abundant recent data suggest that sessile serrated adenoma/polyp (SSA/P) is an early precursor lesion in the serrated pathway of carcinogenesis. It is believed that SSA/Ps develop cancer by an SSA/P-dysplasia-carcinoma sequence. Hyperplastic polyps (HPs) share some histologic and molecular characteristics with SSA/P, but it is unclear whether SSA/Ps are derived from HPs or whether they develop by a different pathogenetic pathway. Previous studies have shown that serrated polyps from Korean patients show different prevalence rates of certain molecular abnormalities compared with similar lesions from American patients, and this suggests that lifestyle and dietary factors may influence the serrated neoplasia pathway. The purpose of this study was to evaluate the molecular features of HPs and SSA/Ps, the latter both with and without dysplasia, from Korean patients and to compare the findings with similar lesions from American patients. One hundred and eleven serrated polyps, consisting of 45 HPs (30 microvesicular, 11 goblet cell, 4 mucin depleted) and 56 SSA/Ps (36 with dysplasia, 20 without dysplasia), were retrieved from the pathology files of a large medical center in Korea and 38 SSA/P from American patients were evaluated for BRAF and KRAS mutations, microsatellite instability, and hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT), hMLH1, adenomatous polyposis coli (APC), p16, methylated in tumor-1 (MINT-1), MINT2, and MINT31. Methylation of hMLH1 was performed using 2 different sets of primers. Twenty-three conventional adenomas from Korean patients were included as controls. The data were compared between polyp subtypes and between polyps in the right versus the left colon. With regard to HP, KRAS mutations were present in 31.1% of polyps and BRAF mutations in 46.7% of polyps. KRAS mutations were significantly more common in goblet cell HP and BRAF in microvesicular HP (MVHP). Methylation of MGMT, hMLH1, APC, p16, MINT1, MINT2, and MINT31 were present in 42.2%, 64.4% (and 24.4%), 37.8%, 60%, 68.9%, 51.1%, and 60% of HPs. CpG island methylator phenotype high was noted in 60% of HPs. Methylation of hMLH1, p16, MINT2, and MINT31 were more frequent in MVHPs compared with other types of HPs. In contrast, SSA/Ps showed KRAS and BRAF mutations in 12.5% and 60.7% of cases, respectively. Methylation of all tumor-related genes, except hMLH1 (23.2% using 1 type of primers) and APC (37.5%), occurred in >50% of lesions, and CpG island methylator phenotype (CIMP) high was noted in 76.8% of cases. None of the molecular findings were significantly more common in SSA/P with, versus those without, dysplasia, but only 2 of the 36 polyps with dysplasia were of the conventional adenomatous type; the remainder (34 of 36) was of the serrated type. Nevertheless, both SSA/P with conventional adenomatous dysplasia showed methylation of MGMT, APC, MINT1, and MINT31 and were CIMP high. BRAF mutations, methylation of most tumor related genes, and CIMP high occurred more frequently in HPs and SSA/Ps in the right colon, compared with the left colon. In fact, no significant differences were observed between HPs and SSPs of the right colon and HPs and SSA/Ps from the left colon. Furthermore, compared with American patients, Korean male individuals were affected more frequently than female individuals, and both BRAF mutations and hMLH1 methylation were less frequent in the latter compared with the former. We conclude that HPs and SSA/Ps in Korean patients share some, but not all, clinical and molecular characteristics to those that occur in Americans. The data support the theory that the right and left colon are biologically different with regard to susceptibility to serrated cancer, and that anatomic location (right vs. left) may be a more significant risk factor of progression than the histologic type of polyp. Our data also support the theory that right-sided MVHPs may be a precursor to SSA/P.

72. PMID 21572398
Acinar cell carcinoma is a rare non-ductal neoplasm of the pancreas with poorly defined molecular genetic features. Recently, biallelic inactivation of LKB1 was described in an acinar cell carcinoma of a Peutz-Jeghers patient carrying a heterozygous germline LKB1 mutation, and inhibition of mTOR signaling resulted in partial remission of the tumor. To explore the potential of mTOR inhibitors in sporadic acinar cell carcinoma, the LKB1 gene was investigated in five sporadic acinar cell carcinomas by sequence analysis, methylation analysis and mRNA expression. In addition, microsatellite instability and methylation of a number of tumor suppressor genes were investigated and KRAS, TP53, CDKN1A, SMAD4 and CTNNB1 were studied by mutation analysis and immunohistochemistry. No mutations, deletions or promoter hypermethylation of LKB1 were found in any of the sporadic acinar cell carcinomas, and mRNA expression of LKB1 was not altered. Amplifications at chromosome 20q and 19p were found in 100 and 80% of the cases, respectively. In addition, hypermethylation of one or more tumor suppressor genes was found in 80% of cases. One case harbored a TP53 mutation, and expression of SMAD4 and CTNNB1 was altered in one case each. No KRAS mutations or microsatellite instability were found. To conclude, no evidence for a role for LKB1 in tumorigenesis of sporadic pancreatic acinar cell carcinoma was found. However, copy number variations and hypermethylation were found in a majority of cases. Molecular pathways involved in acinar cell carcinoma-tumorigenesis differ from those involved in ductal pancreatic neoplasms. Further studies are needed to increase our understanding of molecular pathogenesis of acinar cell carcinoma, which may eventually result in development of new therapeutic targets.

73. PMID 22246241
Activation of Wnt signaling without mutation of ß-catenin or APC occurs frequently in human gastric cancers. Secreted frizzled-related protein (SFRP), a negative modulator of the Wnt signaling pathway, are frequently inactivated in human gastric cancers. Inhibition of SFRP gene expression may account for the Wnt/ß-catenin activation in human gastric cancer. However, the molecular mechanisms of silencing of SFRP genes are not fully understood. Sodium butyrate, a histone deacetylase (HDAC) inhibitor, is known to exhibit anti-cancer effects partly through the differentiation of various cancer cells. In the present study, we investigated: i) the relationship between the silencing of SFRP genes and Wnt signaling; ii) the mechanism of sodium butyrate mediated epigenetic regulation of SFRPs expression in human gastric cancer. We observed that nuclear ß-catenin was significantly increased in gastric cancer tissues as compared to adjacent non-cancerous tissues. Nuclear ß-catenin accumulation and SFRP promoter methylation in human gastric cancer cells were noted. Treatment with the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC) rapidly restored SFRPs expression. Sodium butyrate (NaB) induced demethylation and histone modification at the promoter region of SFRP1/2 restoring the SFRP expression in human gastric cancer cells. Analysis of general expression revealed that overexpression of SFRPs repressed Wnt target gene expression and induced changes in the proliferation and apoptosis related genes in human gastric cancer cells. These data suggest that aberrant epigenetic modification of SFRP genes is one of the major mechanisms by which Wnt signaling is activated in human gastric cancer cells and sodium butyrate may modulate the SFRP1/2 expression through histone modification and promoter demethylation causing anti-tumor effects.

74. PMID 22139573
Acute lymphoblastic leukemia (ALL) likely has a multistep etiology, with initial genetic aberrations occurring early in life. An abnormal immune response to common infections has emerged as a plausible candidate for triggering the proliferation of pre-leukemic clones and the fixation of secondary genetic mutations and epigenetic alterations. We investigated whether evidence of infection with a specific common myelotropic childhood virus, parvovirus B19 (PVB19), relates to patterns of gene promoter DNA methylation in ALL patients. We serologically tested bone marrow samples at diagnosis of B-cell ALL for PVB19 infection and DNA methylation using a high-throughput bead array and found that 4.2% and 36.7% of samples were seroreactive to PVB19 IgM and IgG, respectively. Leukemia samples were grouped by DNA methylation pattern. Controlling for age and immunophenotype, unsupervised modeling confirmed that the DNA methylation pattern was associated with history of PVB19 (assessed by IgG, p = 0.02), but not recent infection (assessed by IgM). Replication assays on single genes were consistent with the association. The data indicate that a common viral illness may drive specific DNA methylation patterns in susceptible B-precursor cells, contributing to the leukemogenic potential of such cells. Infections may impact childhood leukemia by altering DNA methylation patterns and specific key genes in susceptible cells; these changes may be retained even after the clearance of infection.

75. PMID 18227862
Acute myeloid leukemia (AML) is an aggressive hematological cancer. Despite therapeutic regimens that lead to complete remission, the vast majority of patients undergo relapse. The molecular mechanisms underlying AML development and relapse remain incompletely defined. To explore whether loss of DNA mismatch repair (MMR) function is involved in AML, we screened two key MMR genes, MSH2 and MLH1, for mutations and promoter hypermethylation in leukemia specimens from 53 AML patients and blood from 17 non-cancer controls. We show here that whereas no amino acid alteration or promoter hypermethylation was detected in all control samples, 18 AML patients exhibited either mutations in MMR genes or hypermethylation in the MLH1 promoter. In vitro functional MMR analysis revealed that almost all the mutations analyzed resulted in loss of MMR function. MMR defects were significantly more frequent in patients with refractory or relapsed AML compared with newly diagnosed patients. These observations suggest for the first time that the loss of MMR function is associated with refractory and relapsed AML and may contribute to disease pathogenesis.

76. PMID 21800291
Adenoid cystic carcinoma (ACC), a rare and progressive salivary malignancy, is characterized by histogenetic, morphologic, and clinical heterogeneity. Extensive efforts to characterize the molecular events associated with these tumors have included the identification of biomarkers for prognostication and post-therapy assessment. In a previous study of genome-wide methylation screening, the authors of the current report identified a limited number of differentially methylated gene regions in ACC, and significant hypermethylation was observed at the transcriptional start sites of genes that encode for the transcription factor engrailed homeobox 1 (EN1). Clinicopathologic correlation analyses indicated that EN1 methylation status is correlated with histologic tumor grade, tumor location, and final patient outcome. To ascertain definitively whether aberrant EN1 expression accompanies human salivary ACC, the authors used an immunohistochemical technique to directly evaluate EN1 protein expression in ACC of the salivary gland. The data revealed increased EN1 protein expression in solid type ACC, which was correlated with a significantly lower survival rate. The current results validated EN1 as a potential biomarker in a large cohort of patients with salivary ACC. Immunohistochemical analysis of EN1 in biopsy specimens obtained for diagnostic purposes and/or surgically resected material may reveal that EN1 is a biologic predictor of poor prognosis in patients with salivary ACC.

77. PMID 21435086
Adenomatous polyposis coli (APC) gene mutations have been implicated in familial and sporadic gastrointestinal (GI) cancers. APC mutations are associated with autosomal dominant inheritance of disease in humans. Similarly, mice that contain a single mutant APC gene encoding a protein truncated at residue 716 (Apc(?716)) develop multiple polyps throughout the GI tract as early as 4 weeks after birth. Inactivation of another tumor suppressor gene, Hypermethylated in Cancer 1 (HIC1), often occurs in human colon cancers, among others, via CpG island hypermethylation. Homozygous deletion of Hic1 in mice results in major developmental defects and embryonic lethality. Hic1 heterozygotes have previously been shown to develop tumors of a variety of tissue types. We now report that loss of a single Hic1 allele can promote crypt hyperplasia and neoplasia of the GI tract, and Hic1(+/-), Apc(+/?716) double heterozygotes (DH) develop increased numbers of polyps throughout the GI tract at 60 days. Hic1 expression is absent in polyps from DH mice, with concomitant increased expression of two transcriptional repression targets of Hic1, Sirt1 and Sox9. Together, our data suggest that loss of a gene frequently silenced via epigenetic mechanisms, Hic1, can cooperate with loss of a gene mutated in GI cancer, Apc, to promote tumorigenesis in an in vivo model of multiple intestinal neoplasia.

78. PMID 20697142
Adenomyosis is a fairly common gynecologic disease with unknown pathogenesis. We sought to investigate as to whether the promoter of progesterone receptor isoform B (PR-B) is hypermethylated in adenomyosis and to investigate the treatment of ectopic endometrial stromal cells with trichostatin A (TSA), a histone deacetylase inhibitor (HDI), and 5-aza-2-deoxycytidine (ADC), a demethylation agent, on PR-B gene and protein expression, and on cell viability. Ectopic endometrial tissue specimens were obtained from 9 women with adenomyosis whereas control endometrial tissue samples were obtained from 8 women with surgically diagnosed benign ovarian cysts but without any clinical history of endometriosis/adenomyosis/ myoma. Endometrial stromal cells were isolated, purified, cultured, and analyzed by methylation-specific polymerase chain reaction (PCR), real-time reverse transcriptase PCR (RT-PCR), and Western blot analysis, cell viability assays, and fluorescence-activated cell sorting. We found that none of the normal endometrial stromal cells had PR-B promoter methylation. In contrast, 2 out of 3 ectopic endometrial stromall cells had PR-B hypermethylation (P < .05). The treatment with both TSA and ADC elevated PR-B gene and protein expression in ectopic, but not in normal, endometrial stromal cells. Both TSA and ADC treatment dose-dependently reduced cell viability of ectopic endometrial stromal cells. Trichostatin A and ADC treatment also suppressed the cell cycle progression in ectopic endometrial stromal cells. Thus, this study provides the first piece of evidence that adenomyosis has epigenetic aberration and may also be an epigenetic disease amenable to rectification by pharmacological means. This perspective may shed new light onto the pathogenesis of adenomyosis and lead to novel ways to treat the disease.

79. PMID 20169056
Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.

80. PMID 20140245
Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH) in a significant proportion of primary esophageal squamous cell carcinoma (ESCC) samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

81. PMID 20445061
Alpha-synuclein (SNCA) is a major risk gene for Parkinson's disease (PD), and increased SNCA gene dosage results in a parkinsonian syndrome in affected families. We found that methylation of human SNCA intron 1 decreased gene expression, while inhibition of DNA methylation activated SNCA expression. Methylation of SNCA intron 1 was reduced in DNA from sporadic PD patients' substantia nigra, putamen, and cortex, pointing toward a yet unappreciated epigenetic regulation of SNCA expression in PD.

82. PMID 22011581
Alterations in DNA methylation have been associated with genome-wide hypomethylation and regional de novo methylation in numerous cancers. De novo methylation is mediated by the de novo methyltransferases Dnmt3a and 3b, but only Dnmt3b has been implicated in promoting cancer by silencing of tumor-suppressor genes. In this study, we have analyzed the role of Dnmt3a in lung cancer by using a conditional mouse tumor model. We show that Dnmt3a deficiency significantly promotes tumor growth and progression but not initiation. Changes in gene expression show that Dnmt3a deficiency affects key steps in cancer progression, such as angiogenesis, cell adhesion, and cell motion, consistent with accelerated and more malignant growth. Our results suggest that Dnmt3a may act like a tumor-suppressor gene in lung tumor progression and may be a critical determinant of lung cancer malignancy.

83. PMID 20933128
Alterations of DNA methylation and transcription of microRNAs (miRNAs) are very stable phenomena in tissues and body fluids and suitable for sensitive detection. These advantages enable us to translate some important discoveries on epigenetic oncology into biomarkers for control of cancer. A few promising epigenetic biomarkers are emerging. Clinical trials using methylated CpG islands of p16, Septin9, and MGMT as biomarkers are carried out for predication of cancer development, diagnosis, and chemosensitivity. Circulating miRNAs are promising biomarkers, too. Breakthroughs in the past decade imply that epigenetic biomarkers may be useful in reducing the burden of cancer.

84. PMID 21105050
Altered DNA methylation is often seen in malignant cells, potentially contributing to carcinogenesis by suppressing gene expression. We hypothesized that heritable methylation potential might be a risk factor for breast cancer and evaluated possible association with breast cancer for single nucleotide polymorphisms (SNPs) either involving CpG sequences in extended 5'-regulatory regions of candidate genes (ESR1, ESR2, PGR, and SHBG) or CpG and missense coding SNPs in genes involved in methylation (MBD1, MECP2, DNMT1, MGMT, MTHFR, MTR, MTRR, MTHFD1, MTHFD2, BHMT, DCTD, and SLC19A1). Genome-wide searches for genetic risk factors for breast cancers have in general not investigated these SNPs, because of low minor allele frequency or weak haplotype associations. Genotyping was performed using Mass spectrometry-Maldi-Tof in a screening panel of 538 cases and 1,067 controls. Potential association to breast cancer was identified for 15 SNPs and one of these SNPs (rs7766585 in ESR1) was found to associate strongly with breast cancer, OR 1.30 (95% CI 1.17-1.45; p-value 2.1 × 10(-6)), when tested in a verification panel consisting of 3,211 unique breast cancer cases and 4,223 unique controls from five European biobank cohorts. In conclusion, a candidate gene search strategy focusing on methylation-related SNPs did identify a SNP that associated with breast cancer at high significance.

85. PMID 19288029
Altered MDR1 expression and/or function contribute to the pathogenesis of inflammatory bowel disease (IBD). DNA methylation was shown as an important mechanism in gene silencing. We investigated DNA methylation of the MDR1 gene in ulcerative colitis (UC) and its relation to MDR1 C3435T genotypes. Eighty-three UC patients were enrolled. Methylation of MDR1 promoter was determined by methylation specific polymerase (MSP) for rectal inflammatory mucosa from all patients and normal terminal ileum from 17 patients. Promoter methylation of MDR1 gene was also quantified by digital densitographic analysis following MSP. MDR1 methylation was detected in 51 (61.4%) out of 83 patients in rectal inflammatory mucosa. Mean methylation level of MDR1 gene in rectal inflammatory mucosa was significantly higher than in normal terminal ileum (p=0.021). MDR1 methylation occurred more frequently in total colitis, and total+left side colitis, compared to rectal colitis (p=0.001, 0.013, respectively). Higher methylation levels were also associated with chronic continuous type (p=0.034) and earlier onset of disease (p=0.038). The 3435 CC+CT genotype of MDR1 was associated with more than 6-fold increased risk of MDR1 methylation, especially in UC patients with 9 years and shorter duration. Both frequency and level of MDR1 methylation were higher in UC onset at younger or in middle age with the same genotype. MDR1 methylation frequently occurred in inflammatory rectal mucosa from UC patients and was influenced by MDR1 C3435T polymorphism, especially in patients with shorter duration and younger onset.

86. PMID 21290119
Altered expressions of lysophosphatidic acid (LPA) receptor genes have been reported in tumor cells of human and rats. Recently, we detected the frequent mutations of LPA receptor-1 (LPA1) gene in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-amino acid-defined (CDAA) diet. In this study, the DNA methylation patterns of LPA receptor genes and their expression levels during rat hepatocarcinogenesis induced by the CDAA diet were investigated. Six-week-old F344 male rats were continuously fed with the CDAA diet, and animals were then killed at 7 days and 2, 12, 20, and 75 weeks, respectively. Genomic DNAs were extracted from livers and HCCs for the assessment of methylation status by bisulfite sequencing, comparing to normal livers. The livers of rats fed the CDAA diet were unmethylated in LPA1 and LPA2 genes as well as normal livers. In LPA3 gene, although normal livers were unmethylated, the livers at 7 days and 2 and 12 weeks weakly or moderately methylated and those at 20 weeks markedly methylated. Moreover, 4 HCCs were completely methylated in LPA3 gene. Expression levels of LPA receptor genes in the livers of rats fed the CDAA diet and HCCs were correlating with DNA methylation status. These results indicate that DNA methylation status of the LPA3 gene was disturbed in the livers of rats fed the CDAA diet and established HCCs, suggesting that alterations of the LPA receptor genes might be involved during rat hepatocarcinogenesis induced by the CDAA diet.

87. PMID 22244828
Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon.

88. PMID 21237555
Altered signaling pathways resulting from aberrant changes in epigenetic parameters may play a pivotal role in carcinogenesis. To identify biological pathways likely to be affected by methylation-mediated alterations in gene expression in prostate cancer, we performed a genome-wide methylation analysis of 27,578 CpG sites, corresponding to 14,495 genes on a pooled sample of 12 pairs of prostate tumor and adjacent normal tissues. In all, 972 CpG sites were significantly hypermethylated while 209 sites were hypomethylated in prostate tumor tissue (FDR adjusted p-value<0.05; fold change=2) corresponding to 1043 unique genes, which is consistent with genome-wide gene-specific hypermethylation patterns previously observed in multiple cancer models. Global hypomethylation in prostate tumor was also detected by measuring methylation changes in ALU repeat sequences. Pathway analysis of the genes with altered methylation patterns identifies the involvement of a cancer related network of genes whose activity may be heavily regulated by TNF-a in prostate tumorigenesis. Our results suggest that epigenetic dysregulation of cellular processes relevant to TNF-a-dependent apoptosis and electrophile detoxification may be intimately involved in prostate carcinogenesis. These findings may lend credence to the possibility of using tumor-specific alterations in methylation patterns as biomarkers in estimating prognosis and assessing treatment options for prostate cancer.

89. PMID 21518779
Although DNA hypermethylation within promoter CpG islands is highly correlated with tumorigenesis, it has not been established whether DNA hypermethylation within a specific tumor suppressor gene (TSG) is sufficient to fully transform a somatic stem cell. In this study, we addressed this question using a novel targeted DNA methylation technique to methylate the promoters of HIC1 and RassF1A, two well-established TSGs, along with a two-component reporter system to visualize successful targeting of human bone marrow-derived mesenchymal stem cells (MSC) as a model cell system. MSCs harboring targeted promoter methylations of HIC1/RassF1A displayed several features of cancer stem/initiating cells including loss of anchorage dependence, increased colony formation capability, drug resistance, and pluripotency. Notably, inoculation of immunodeficient mice with low numbers of targeted MSC resulted in tumor formation, and subsequent serial xenotransplantation and immunohistochemistry confirmed the presence of stem cell markers and MSC lineage in tumor xenografts. Consistent with the expected mechanism of TSG hypermethylation, treatment of the targeted MSC with a DNA methyltransferase inhibitor reversed their tumorigenic phenotype. To our knowledge, this is the first direct demonstration that aberrant TSG hypermethylation is sufficient to transform a somatic stem cell into a fully malignant cell with cancer stem/initiating properties.

90. PMID 22037257
Although DNA methylation profiles in breast cancer have been connected to breast cancer molecular subtype, there have been no studies of the association of DNA methylation with stem cell phenotype. This study was designed to evaluate the promoter CpG island methylation of 15 genes in relation to breast cancer subtype, and to investigate whether the patterns of CpG island methylation in each subtype are associated with their cancer stem cell phenotype represented by CD44+/CD24- and ALDH1 expression. . The number of CpG island loci methylated differed significantly between subtypes, and was highest in the luminal-HER2 subtype and lowest in the basal-like subtype. Methylation frequencies and levels in 12 of the 15 genes differed significantly between subtypes, and the basal-like subtype had significantly lower methylation frequencies and levels in nine of the genes than the other subtypes. CD44+/CD24- and ALDH1+ putative stem cell populations were most enriched in the basal-like subtype. Methylation of promoter CpG islands was significantly lower in CD44+/CD24-cell (+) tumors than in CD44+/CD24-cell (-) tumors, even within the basal-like subtype. ALDH1 (+) tumors were also less methylated than ALDH1 (-) tumors. Our findings showed that promoter CpG island methylation was different in relation to breast cancer subtype and stem cell phenotype of tumor, suggesting that breast cancers have distinct patterns of CpG island methylation according to molecular subtypes and these are associated with different stem cell phenotypes of the tumor.

91. PMID 18635238
Although E-cadherin expression is frequently reduced in colorectal cancers (CRCs), this does not appear to be due to gene mutation or allele loss. We investigated the hypothesis that promoter methylation could be responsible for suppression of E-cadherin expression in 142 pairs of sporadic CRCs and respective normal mucosae. E-cadherin expression was examined by Western blot. E-cadherin methylation at two promoter regions was quantitatively measured by methylation specific real time PCR (MethyLight). We found that E-cadherin protein levels were significantly lower in CRCs, even in Dukes' A tumors, compared to normal mucosae. Decreased E-cadherin protein expression in CRCs was an independent poor prognostic factor in multivariate disease-free survival analysis. However, the extent of DNA methylation was extremely modest at both regions of the E-cadherin promoter. There was no correlation between DNA methylation and E-cadherin protein levels in either tumors or matched normal tissues. These findings suggested that suppression of E-cadherin expression in CRCs is a significant event and is possibly involved in both carcinoma development and progression. However, our data did not support a crucial role of promoter methylation of the E-cadherin gene in the remarkable downregulation of E-cadherin expression in CRCs. Methylated E-cadherin gene as a CRC biomarker therefore needs further validation.

92. PMID 21990318
Although alterations in xenobiotic metabolism are considered causal in the development of bladder cancer, the precise mechanisms involved are poorly understood. In this study, we used high-throughput mass spectrometry to measure over 2,000 compounds in 58 clinical specimens, identifying 35 metabolites which exhibited significant changes in bladder cancer. This metabolic signature distinguished both normal and benign bladder from bladder cancer. Exploratory analyses of this metabolomic signature in urine showed promise in distinguishing bladder cancer from controls and also nonmuscle from muscle-invasive bladder cancer. Subsequent enrichment-based bioprocess mapping revealed alterations in phase I/II metabolism and suggested a possible role for DNA methylation in perturbing xenobiotic metabolism in bladder cancer. In particular, we validated tumor-associated hypermethylation in the cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) promoters of bladder cancer tissues by bisulfite sequence analysis and methylation-specific PCR and also by in vitro treatment of T-24 bladder cancer cell line with the DNA demethylating agent 5-aza-2'-deoxycytidine. Furthermore, we showed that expression of CYP1A1 and CYP1B1 was reduced significantly in an independent cohort of bladder cancer specimens compared with matched benign adjacent tissues. In summary, our findings identified candidate diagnostic and prognostic markers and highlighted mechanisms associated with the silencing of xenobiotic metabolism. The metabolomic signature we describe offers potential as a urinary biomarker for early detection and staging of bladder cancer, highlighting the utility of evaluating metabolomic profiles of cancer to gain insights into bioprocesses perturbed during tumor development and progression.

93. PMID 21165581
Although down-regulation of WNT5A expression has been reported in some types of leukaemias, the level of WNT5A expression has not been assessed in leukaemia complete remission (CR) cases, the relationship among WNT5A expression level, the status of its promoter methylation, and the curative effect of leukaemia has not been reported, and the effect of WNT5A on cell proliferation has not been assessed. In this study, we analyzed WNT5A expression in various kinds of leukaemia cases, leukaemia CR cases, non-malignant hematopoietic (NMH) cases, as well as in leukemic cell lines and CD34+ cells. The methylation status of the WNT5A promoter and the levels of the Wnt5a protein were also studied. We also investigated the effect of Wnt5a on leukemic cell proliferation. WNT5A expression level was higher in NMH but lower in leukaemia cases compared to that in CR-cases (P<0.01), and was expressed at low level in leukemic cell lines K562, U937 and Jurkat. Wnt5a protein was positive in NMH, CR cases and CD34+, but negative in leukaemia cases. WNT5A promoter was methylated in leukaemia cases and all leukemic cell lines, but not in NMH and CR cases. WNT5A expression was up-regulated after exposure to the demethylating agent 5-Aza-2'-deoxycytidine (Aza) in the K562, U937, Jurkat leukemic cell lines and in 83.3% (10/12) of CR patients after cure, respectively. The increased Wnt5a protein can inhibit K562 malignant proliferation and arrest cell cycle at the G2/M phase after exposure to Aza. These results indicate that WNT5A expression was restored in complete remission cases due to demethylation, and Wnt5a can inhibit leukaemic cell proliferation. We propose that WNT5A can act as a suppressor factor in leukemogenesis and can be used as a potential marker for curative effect assessment in leukaemia.

94. PMID 20140954
Although growing evidence demonstrates that TWIST1 is an interesting tumor biomarker, little is known about the clinical significance of TWIST1 expression and TWIST1 methylation in human primary colorectal cancer. In this study, we examined the association of TWIST1 expression and TWIST1 methylation with clinicopathologic features in human primary colorectal tumors. Primary colorectal cancer (CRC) specimens from 319 patients, corresponding normal colorectal nontumorous mucosa from 251 patients with cancer, and colorectal adenomas from 189 patients were used. Methylation and expression levels of TWIST1 were compared with clinicopathologic features. . Elevated TWIST1 mRNA expression in normal colorectal mucosa in patients with CRC as well as in primary CRC specimens was associated with unfavorable outcomes. There was no correlation between TWIST1 methylation and TWIST1 expression. Our results suggest that TWIST1 methylation may be a useful biomarker for screening colorectal tumors. In addition, TWIST1 mRNA expression is a possible molecular marker for predicting the outcome in patients with CRC. Confirmatory studies using independent data sets are needed to confirm our findings.

95. PMID 19268989
Although hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, the molecular pathogenesis of the disease has not been elucidated. Several studies have shown that telomerase activity and hTERT expression are increased in HCCs. In the present study we tried to elucidate hTERT transcriptional and epigenetic regulatory mechanisms in HCC. hTERT expression was tested by real-time PCR and DNA methylation status was assessed by MethyLight and DNA bisulfite sequencing analyses in 106 tissues (64 with HCC and 42 without liver disorders) and also in 7 hepatocarcinoma cell lines (HepG2, HepG3B2, C3A, SNU-182, SNU-398, SBU-449 and SNU-475). hTERT expression levels were inversely correlated with DNA methylation levels in HCC and normal tissues (r=-0.859). hTERT expression was found to be regulated by DNA methylation and histone H3-K9 modifications, affecting the ability of c-myc binding in E-box 1 site in hTERT promoter. Additionally, c-myc siRNA liposomal down-regulation inhibited significantly hTERT expression (p<0.05). Thus, we propose that hTERT is regulated by a combination of epigenetic mechanisms (DNA methylation and histone modifications) and by the transcription factor c-myc in HCC.

96. PMID 22161215
Although minimal invasive treatment is widely accepted in the early stages of gastric cancer (GCa), we still do not have any appropriate risk markers to detect residual neoplasia and the potential for recurrence. We previously reported that aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for the detection of gastric neoplasia. Our goal is to find and identify some candidate genes, using genome-wide DNA methylation analysis, as a treatment marker for early gastric cancer (EGC). We performed methylated CpG island amplification microarray analysis using 12 gastric washes (six each of pre- and post-endoscopic treatment in each of the same patients). We finally focused on Sox17 gene. We examined the DNA methylation status of Sox17 in a validation set consisting of 128 wash samples (pre, 64; post, 64) at EGC. We next carried out functional studies to identify Sox17. Sox17 showed significant differential methylation between pre- and post-treatments in EGC patients (Sox17, p <; 0.0001). Moreover, treating GCa cells that lacked Sox17 expression with a methyltransferase inhibitor, 5-aza-2'-deoxycytidine, restored the gene's expression. Additionally, the introduction of exogenous Sox17 into silenced cells suppressed colony formation. Gastric wash-based DNA methylation analysis could be useful for early detection of recurrence following endoscopic resection in EGC patients. Our data suggest that the silencing of Sox17 occurs frequently in EGC and may play a key role in the development and progression of the disease.

97. PMID 22339411
Although soy phytoestrogens have been postulated to exert a protective effect against breast cancer, the attendant mechanisms, in particular epigenetics underpinnings, have remained elusive. We investigated the putative effects on DNA methylation by two naturally occurring isoflavones, genistein and daidzein, in a study of the BRCA1 and BRCA2 oncosuppressor genes in breast cancer cell lines (MCF-7, MDA-MB 231, and MCF10a). A demethylant agent, the 5-azacytidine, and a methylant, the budesonide, were used as treatment controls. DNA methylation of BRCA1 and BRCA2 was investigated with methylated DNA immunoprecipitation coupled with PCR. In parallel, protein expression was determined by Western blot, immunohistochemistry, and confocal microscopy. Our results suggest that treatment with 18.5?µM Genistein or 78.5?µM Daidzein might reverse DNA hypermethylation and restore the expression of the oncosuppressor genes BRCA1 and BRCA2. 5-Azacitydine also enhanced the reexpression of these genes while budesonide had an opposite effect. To the best of our knowledge, these observations, while requiring replication, provide new evidence on potential epigenetic mechanisms by which genistein and daidzein might contribute to regulation of the BRCA1 and BRCA2. Future studies are warranted on whether the demethylating effect of genistein and daidzein is global or focused on select candidate genes.

98. PMID 20146264
Although the inflammation-associated cytokine interleukin-6 (IL-6) has been implicated in cholangiocarcinoma growth, the relationship between IL-6 and oncogenic changes is unknown. IL-6 can increase expression of DNA methyltransferase-1 (DNMT-1) and epigenetically regulate the expression of several genes, including microRNAs (miRNAs). DNMT-1 up-regulation occurs in hepatobiliary cancers and is associated with a poor prognosis. To understand the potential regulation of DNMT-1 by IL-6-dependent miRNAs, we examined the expression of a group of miRNAs which have sequence complementarity to the 3'-untranslated region of DNMT-1, namely miR-148a, miR-152, and miR-301. The expression of these miRNAs was decreased in cholangiocarcinoma cells. Moreover, the expression of all three miRNAs was decreased in IL-6-overexpressing malignant cholangiocytes in vitro and in tumor cell xenografts. There was a concomitant decrease in expression of the methylation-sensitive tumor suppressor genes Rassf1a and p16INK4a. Using luciferase reporter constructs, DNMT-1 was verified as a target for miR-148a and miR-152. Precursors to miR-148a and miR-152 decreased DNMT-1 protein expression, increased Rassf1a and p16INK4a expression, and reduced cell proliferation. Conclusion: These data indicate that IL-6 can regulate the activity of DNMT-1 and expression of methylation-dependent tumor suppressor genes by modulation of miR-148a and miR-152, and provide a link between this inflammation-associated cytokine and oncogenesis in cholangiocarcinoma.

99. PMID 22556262
Although the physiologic significance of lysine methylation of histones is well known, whether lysine methylation plays a role in the regulation of nonhistone proteins has not yet been examined. The histone lysine methyltransferase SETD8 is overexpressed in various types of cancer and seems to play a crucial role in S-phase progression. Here, we show that SETD8 regulates the function of proliferating cell nuclear antigen (PCNA) protein through lysine methylation. We found that SETD8 methylated PCNA on lysine 248, and either depletion of SETD8 or substitution of lysine 248 destabilized PCNA expression. Mechanistically, lysine methylation significantly enhanced the interaction between PCNA and the flap endonuclease FEN1. Loss of PCNA methylation retarded the maturation of Okazaki fragments, slowed DNA replication, and induced DNA damage, and cells expressing a methylation-inactive PCNA mutant were more susceptible to DNA damage. An increase of methylated PCNA was found in cancer cells, and the expression levels of SETD8 and PCNA were correlated in cancer tissue samples. Together, our findings reveal a function for lysine methylation on a nonhistone protein and suggest that aberrant lysine methylation of PCNA may play a role in human carcinogenesis. Cancer Res; 1-11. ©2012 AACR.

100. PMID 18300422
Although the primary role of vascular smooth muscle cells (SMCs) is contraction, they exhibit extensive phenotypic diversity and plasticity during normal development, during repair of vascular injury, and in disease states including arteriosclerosis and tumour angiogenesis. Results of recent studies indicate that there are unique as well as common transcriptional regulatory mechanisms that control expression of various SMC marker genes within vascular SMC subtypes, and that these mechanisms are complex and dynamic even at the single cell level. This chapter will review recent progress in our understanding of the complex processes, environmental cues, and genes that control development of vascular SMCs from embryonic stem cells, as well as mechanisms that contribute to phenotypic switching of SMCs following vascular injury or in disease states. A major focus will be to summarize recent studies in our laboratory and others showing the importance of CArG-SRF-myocardin-dependent mechanisms and epigenetic controls in regulation of vascular SMC lineage. Of major interest, we have shown that SMC precursor cells acquire a unique pattern of epigenetic changes (i.e. chromatype) during early development that distinguish them from other cell lineages, and makes them permissive for activation of cell selective genes required for their specialized function. In addition, we show that phenotypic switching of SMCs in response to PDGF BB in vitro, or vascular injury in vivo is associated with loss of a subset of activating histone modifications at gene loci encoding SMC marker genes, but retention of additional markers such as H3K4 methylation. We postulate that the latter epigenetic changes may provide a mechanism for 'cell lineage memory' during reversible phenotypic switching of vascular SMCs.

101. PMID 22615872
Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.

102. PMID 22307972
Aminopeptidase N (APN)/CD13 as ubiquitously expressed membrane peptidase exerts important functions in diverse cellular processes, such as proliferation, migration and differentiation. Previously, a role of APN in the invasiveness of melanoma cells has been demonstrated, but the underlying molecular mechanisms controlling APN expression are not understood. The present study demonstrates that lack of APN expression in primary and established melanoma cells was directly associated with a high-grade DNA methylation status of the myeloid APN promoter. Demethylation by 5-aza-2'-desoxycytidine not only induced constitutive and cytokine-regulated APN protein expression but also resulted in an increased APN-dependent migration of melanoma cells. Furthermore, its heterogeneous expression was inversely correlated to the expression of melanocytic marker proteins in established as well as in short-term cultured human melanoma cells. Staining of tissue microarrays generated from a large series of melanoma samples and control tissues demonstrated a higher APN expression in primary melanoma lesions when compared with nevi and metastases, which was neither associated with clinico-pathological parameters nor with the patients' outcome. Thus, the heterogeneous APN expression pattern in melanoma cells is epigenetically controlled and directly associated with an altered migration capacity but not of clinical significance in our study group.

103. PMID 22172496
An electrochemical genosensor for the detection of hypermethylation of the glutathione S-transferase P1 (GSTP1) gene, a specific marker of prostate cancer, was reported. This new sensor was used in combination with a single-use carbon graphite working electrode and differential pulse voltammetry, with the results of sample analysis based on the guanine oxidation signals obtained at +1.0 V before and after hybridization between probe and synthetic target or denatured PCR samples. The detected DNA hybridization was also characterized by electrochemical impedance spectroscopy with potassium ferri/ferrocyanide as a redox probe. The protocol consisted of 2 different modes: (i) capture probes selective for methylation-specific and unmethylated GSTP1 sequences were immobilized onto the sensor directly, and hybridization was formed on the electrode surface; (ii) probe/target or probe/noncomplementary target couples were mixed in solution phase, and the transducer was modified through simple adsorption. The limit of detection (S/N=3) was calculated as 2.92 pmol of target sequence in a 100-µl reaction volume. The optimum analytical detection parameters for the biosensor, as well as its future prospects, were also presented.

104. PMID 22579630
An elevated cell-free DNA (cfDNA) level is often reported in patients with advanced cancer and is thought to represent nuclear material from a distant inaccessible tumor. cfDNA can become a valuable source to monitor tumor dynamics and evaluate genetic markers for predictive, prognostic, and diagnostic testing. DNA extraction and quantification were optimized with plasma collected from 20 patients with advanced cancer and 16 healthy controls. Plasma cfDNA from patients with advanced cancer was evaluated for TP53 genetic variation and methylation status of CpG islands in several promoters of known disease-related genes. Tumor biopsy and corresponding plasma specimens were collected from study participants to determine whether the same genetic variations were present in both samples. The cfDNA isolation method provided a lower DNA detection limit of 144 pg, equivalent to DNA from approximately 24 cells. Normal pooled human plasma cfDNA averaged 110 copies/mL of the ACTB gene. Extracted cfDNA was suitable for gene-specific variant detection, sequencing, and promoter methylation analysis. DNA extracted from tumor biopsy and corresponding plasma specimens from two patients with advanced cancer revealed an identical, nonsynonymous variant present in both samples. Immunohistochemical analysis confirmed the TP53 mutant phenotype in the tumor specimens. Quantitative measurement of cfDNA represents a useful biomarker to follow treatment outcome and is a valuable tool with which to characterize specific genetic alterations for both patient selection and personalized treatment.

105. PMID 22419067
An obstacle in the treatment of human diseases such as cancer is the inability to selectively and effectively target historically undruggable targets such as transcription factors. Here, we employ a novel technology using artificial transcription factors (ATFs) to epigenetically target gene expression in cancer cells. We show that site-specific DNA methylation and long-term stable repression of the tumor suppressor Maspin and the oncogene SOX2 can be achieved in breast cancer cells via zinc-finger ATFs targeting DNA methyltransferase 3a (DNMT3a) to the promoters of these genes. Using this approach, we show Maspin and SOX2 downregulation is more significant as compared with transient knockdown, which is also accompanied by stable phenotypic reprogramming of the cancer cell. These findings indicate that multimodular Zinc Finger Proteins linked to epigenetic editing domains can be used as novel cell resources to selectively and heritably alter gene expression patterns to stably reprogram cell fate.

106. PMID 20427744
Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

107. PMID 21114775
Approximately 20 percent of right-sided colon cancers and 5 percent of left-sided colon and rectal cancers have a deficient DNA mismatch repair system. This results in the widespread accumulation of mutations to nucleotide repeats, some of which occur within the coding regions of cancer-related genes such as TGFßRII and BAX. A standardized definition for microsatellite instability (MSI) based on the presence of deletions to mononucleotide repeats is gaining widespread acceptance in both research and the clinic. Colorectal cancer (CRC) with MSI are characterized histologically by an abundance of tumor-infiltrating lymphocytes, poor differentiation and a signet ring or mucinous phenotype. In younger patients these tumors usually develop along the chromosomal instability pathway, in which case the mismatch repair genes are inactivated by germline mutation, somatic mutation and loss of heterozygosity. In older patients MSI CRC usually develops against a background of widespread hypermethylation that includes methylation-induced silencing of the mismatch repair gene MLH1. The overall biological and clinical phenotype of MSI CRC that arise in these two pathways is likely to be different and may account for some of the discordant results reported in the literature relating to the clinical properties of these tumors. The available evidence indicates that MSI is unlikely to be a clinically useful marker for the prognostic stratification of early-stage CRC. The predictive value of MSI for response to 5-fluorouracil-based chemotherapy remains controversial, while for other agents the predictive value is difficult to assess because they are used in combination regimens. The MSI phenotype is being actively investigated for novel therapeutic approaches based on the principle of synthetic lethality. Finally, the MSI status of CRC is an extremely useful marker for population-based screening programs that aim to identify individuals and families with the hereditary cancer condition known as Lynch syndrome.

108. PMID 21435086
Approximately 20-40% of hepatocellular carcinoma (HCC) patients who undergo liver transplantation (LT) experience HCC recurrence within 5 years of the operation. Current predictors cannot sufficiently differentiate patients at risk for biochemical recurrence. The aim of the present study was to investigate the methylation status and expression levels of cell adhesion molecule 1 (CADM1) in HCC; to elucidate its regulation mechanisms; and finally, to evaluate the potential predictive value for tumor recurrence. Aberrant hypermethylation of CADM1 was frequently found in HCC cell lines with decreased CADM1 mRNA by bisulfite sequencing PCR. Re-expression of CADM1 was induced by treatment with demethylating agents. The promoter region of CADM1 was identified and the basal promoter activity was located in the -226 to -146 region relative to the transcriptional start site (TSS). Site-directed mutagenesis revealed that the consensus Sp1 binding site located in the basal promoter region was important for mediating CADM1 promoter activity. Furthermore, aberrant hypermethylation of CADM1 was detected in 34 of 82 (41.5%) of HCC tissues. The recurrence rate of the patients with CADM1 methylation was higher compared to that without CADM1 methylation (70.6% versus 33.3%; P=0.001). Multivariate analysis revealed that CADM1 methylation status (HR = 2.788; 95% CI, 1.043-5.063; P=0.010) was an independent prognostic factor for disease-free survival (DFS) of HCC patients treated with LT. In conclusion, CADM1 methylation may be used as a potential predictive biomarker for tumor recurrence of HCC after LT.

109. PMID 20808801
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

110. PMID 20548956
As an inhibitor of cyclin-dependent kinases, p16(INK4A) is an important tumour suppressor and inducer of cellular senescence that is often inactivated during the development of cancer by promoter DNA methylation. Using newly established lymphoblastoid cell lines (LCLs) expressing a conditional EBNA3C from recombinant EBV, we demonstrate that EBNA3C inactivation initiates chromatin remodelling that resets the epigenetic status of p16(INK4A) to permit transcriptional activation: the polycomb-associated repressive H3K27me3 histone modification is substantially reduced, while the activation-related mark H3K4me3 is modestly increased. Activation of EBNA3C reverses the distribution of these epigenetic marks, represses p16(INK4A) transcription and allows proliferation. LCLs lacking EBNA3A express relatively high levels of p16(INK4A) and have a similar pattern of histone modifications on p16(INK4A) as produced by the inactivation of EBNA3C. Since binding to the co-repressor of transcription CtBP has been linked to the oncogenic activity of EBNA3A and EBNA3C, we established LCLs with recombinant viruses encoding EBNA3A- and/or EBNA3C-mutants that no longer bind CtBP. These novel LCLs have revealed that the chromatin remodelling and epigenetic repression of p16(INK4A) requires the interaction of both EBNA3A and EBNA3C with CtBP. The repression of p16(INK4A) by latent EBV will not only overcome senescence in infected B cells, but may also pave the way for p16(INK4A) DNA methylation during B cell lymphomagenesis.

111. PMID 21725199
As an integral component of the microenvironment in colorectal cancer (CRC), stromal cells can influence tumor progression. Found in the extracellular matrix of CRC, secreted protein acidic and rich in cysteine (SPARC) is expressed in stromal and CRC cells. While SPARC's influence on CRC is not clear, we hypothesized that epigenetically regulated SPARC expression in the microenvironment stromal cells of CRC can affect primary CRC progression and is influenced by lymphovascular invasion (LVI). Quantitative immunohistochemistry (IHC) analysis of paraffin-embedded (n=72) from 37 LVI-positive and 35 LVI-negative primary CRCs was performed. MassARRAY sequencing was performed to assess the methylation status of the promoter region in 22 LVI-positive and 20 LVI-negative CRC and to identify specific CpG island(s) regulating SPARC expression. SPARC in CRC cells was not correlated with LVI, whereas SPARC in the microenvironment stromal cells was inversely related to LVI (P < 0.0001). There was a direct relationship between LVI and 6 specific CpG site methylation in the SPARC promoter region of stromal cells (P = 0.017) but not in CRC cells. Stromal SPARC expression inversely correlated with VEGF-A expression in CRC (P = 0.003) and positively correlated with HSP27 expression (P = 0.009). The results suggested that the epigenetic regulation of SPARC expression in tumor cells versus stromal cells of CRC is significantly different. Stromal cell SPARC expression is epigenetically influenced by LVI of CRC tumors, and may play a significant role in primary CRC progression.

112. PMID 18635238
. We analysed 60 cervical cancer tissue biopsies of different clinical stage and histological grading and 23 healthy control samples with normal cervical cytology. Methylation-specific polymerase chain reaction (MSP) was performed to analyse the methylation status of FHIT and RASSF1A genes and confirmed by sequencing. Both patients and controls were screened for HPV infection and 98% of the HPV-infected cases showed positivity for HPV type 16. Aberrant promoter methylation of the FHIT gene was found in 28.3% (17/60) of cases and of the RASSF1A gene in 35.0% (21/60) of cases; promoter methylation of both the genes was found in 13.3% (8/60) of cervical cancer cases. Methylation was significantly (p<0.01) associated with the cervical cancer cases compared with controls. None of the 23 controls was found to be methylated in either of these genes. This is the first study indicating a correlation between the promoter methylation of FHIT and RASSF1A genes and the clinical stage and histological grading of cervical carcinoma in Indian women. Future studies are underway to examine the practical implications of these findings for use as a biomarker.

113. PMID 21969138
As one of major epigenetic changes to inactivate tumor suppressor genes in human carcinogenesis, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes and predict the prognosis of cancer patients. . KL expression was downregulated in primary gastric carcinoma tissues (n=22, p<0.05) and all of gastric cancer cells lines examined. Ectopic expression of KL inhibited the growth of gastric cancer cells partially through the induction of apoptosis, demonstrating a tumor suppressive role of KL in gastric cancer. Demethylation with 5-aza-2'-deoxycytidine (Aza) increased KL expression and KL promoter was hypermethylated in gastric cancer cell lines as well as some of primary gastric carcinoma tissues (47/99) but none of normal gastric tissues. Importantly, promoter methylation of KL was significantly associated with the poor outcome of gastric cancer patients (p=0.025, Log-rank test), highlighting the relevance of epigenetic inactivation of KL in gastric carcinogenesis. As a summary, we found that KL is a novel tumor suppressor gene epigenetically inactivated in gastric cancer and promoter methylation of KL could be used to predict the prognosis of gastric cancer patients.

114. PMID 20233903
As transcriptional regulators, circadian genes have the potential to influence a variety of biological pathways, including many cancer-related processes. Cryptochrome 2 (CRY2) is essential for proper circadian timing and is a key component of the circadian regulatory feedback loop. Here, we report findings from genetic, epigenetic, loss-of-function, and transcriptional profiling analyses of CRY2 in breast cancer. Six single-nucleotide polymorphisms in CRY2 were identified for genotyping in a case-control population (n = 441 cases and n = 479 controls), and three single-nucleotide polymorphisms (rs11038689, rs7123390, and rs1401417) were significantly associated with postmenopausal breast cancer risk, with significant effect modification by menopausal status [dominant model for rs11038689: odds ratio (OR), 0.71; 95% confidence interval (95% CI), 0.51-0.99; P for trend = 0.028; homozygous variants for rs7123390: OR, 0.44; 95% CI, 0.22-0.86; P for trend = 0.028; and rs1401417: OR, 0.44; 95% CI, 0.21-0.92; P for trend = 0.017]. Interestingly, this association was only evident in women with estrogen and progesterone receptor (ER/PR)-negative breast tumors but not with ER/PR-positive tumors. Breast cancer patients also had significantly higher levels of CRY2 promoter methylation relative to controls, which is consistent with tissue array data showing lower levels of CRY2 expression in tumor tissue relative to adjacent normal tissue. Furthermore, in vitro analyses identified several breast cancer-relevant genes that displayed altered expression following CRY2 knockdown. These findings suggest a role for CRY2 in breast tumorigenesis and provide further evidence that the circadian system may be an important modulator of hormone-related cancer susceptibility.

115. PMID 22647397
Assessment of DNA methylation has become a critical factor for the identification, development and application of methylation based biomarkers. Here we describe a systematic comparison of a quantitative high-resolution mass spectrometry-based approach (MassARRAY), pyrosequencing and the broadly used methylation-specific PCR (MSP) technique analyzing clinically relevant epigenetically silenced genes in acute myeloid leukemia (AML). By MassARRAY and pyrosequencing, we identified significant DNA methylation differences at the ID4 gene promoter and in the 5' region of members of the SFRP gene family in 62 AML patients compared with healthy controls. We found a good correlation between data obtained by MassARRAY and pyrosequencing (correlation coefficient R ( 2) = 0.88). MSP-based assessment of the identical samples showed less pronounced differences between AML patients and controls. By direct comparison of MSP-derived and MassARRAY-based methylation data as well as pyrosequencing, we could determine overestimation of DNA methylation data by MSP. We found sequence-context dependent highly variable cut-off values of quantitative DNA methylation values serving as discriminator for the two MSP methylation categories. Moreover, good agreements between quantitative methods and MSP could not be achieved for all investigated loci. Significant correlation of the quantitative assessment but not of MSP-derived methylation data with clinically important characteristics in our patient cohort demonstrated clinical relevance of quantitative DNA methylation assessment. Taken together, while MSP is still the most commonly applied technique for DNA methylation assessment, our data highlight advantages of quantitative approaches for precise characterization and reliable biomarker use of aberrant DNA methylation in primary patient samples, particularly.

116. PMID 22649419
At present no successful treatment is available for advanced thyroid cancer, which comprises poorly differentiated, anaplastic, and metastatic or recurrent differentiated thyroid cancer not responding to radioiodine. In the last few years, biologically targeted therapies for advanced thyroid carcinomas have been proposed on the basis of the recognition of key oncogenic mutations. Although the results of several phase II trials look promising, none of the patients treated had a complete response, and only a minority of them had a partial response, suggesting that the treatment is, at best, effective in stabilizing patients with progressive disease. "Epigenetic" refers to the study of heritable changes in gene expression that occur without any alteration in the primary DNA sequence. The epigenetic processes establish and maintain the global and local chromatin states that determine gene expression. Epigenetic abnormalities are present in almost all cancers and, together with genetic changes, drive tumor progression. Various genes involved in the control of cell proliferation and invasion (p16INK4A, RASSF1A, PTEN, Rap1GAP, TIMP3, DAPK, RARß2, E-cadherin, and CITED1) as well as genes specific of thyroid differentiation (Na+/I- symport, TSH receptor, pendrin, SL5A8, and TTF-1) present aberrant methylation in thyroid cancer. This review deals with the most frequent epigenetic alterations in thyroid cancer and focuses on epigenetic therapy, whose goal is to target the chromatin in rapidly dividing tumor cells and potentially restore normal cell functions. Experimental data and clinical trials, especially using deacetylase inhibitors and demethylating agents, are discussed.

117. PMID 22308499
B-cell chronic lymphocytic leukemia (CLL) is the most common human leukemia. Deregulation of the T-cell leukemia/lymphoma 1 oncogene (TCL1) in mouse B cells causes a CD5(+) leukemia similar to aggressive human CLL. To examine the mechanisms by which Tcl1 protein exerts its oncogenic activity in B cells, we performed proteomics experiments to identify its interacting partners. We found that Tcl1 physically interacts with de novo DNA methylthansferases Dnmt3A and Dnmt3B. We further investigated the effects of Tcl1 up-regulation on the enzymatic activity of Dnmt3A and found that Tcl1 overexpression drastically inhibits Dnmt3A function. In addition, B cells from TCL1 transgenic mice showed a significant decrease in DNA methylation compared with WT controls. Similarly, CLL samples with high Tcl1 expression showed a decrease in DNA methylation compared with CLL samples with low Tcl1 expression. Given the previous reports of inactivating mutations of DNMT3A in acute myelogenous leukemia and myelodysplastic syndrome, our results suggest that inhibition of de novo DNA methylation may be a common oncogenic mechanism in leukemogenesis.

118. PMID 22569826
BACKGROUND AND AIMS: Changes in the expression of signal transducer and activator of transcription 4 (STAT4) contribute to the development of a variety of autoimmune diseases including inflammatory bowel diseases (IBDs). Moreover, epigenetic modifications, including DNA methylation, are considered a basis for differentiation of T helper cells and regulation of cytokines. In this study, we investigated the methylation status of STAT4 gene in IBD patients and the associations between its genetic and epigenetic alterations in IBD patients. METHODS: Blood and colonic mucosa samples were obtained from Korean patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated, and total RNA and genomic DNA were isolated from the PBMCs and colon mucosa tissues. The mRNA level and DNA methylation status of the promoter were determined by real-time RT-PCR and pyrosequencing, respectively. The chosen SNPs (rs11889341, rs7574865, rs8179673, rs6752770, rs925847, rs10168266, rs10181656, and rs11685878) were genotyped using the TaqMan nuclease assay. RESULTS: Elevated expression of STAT4 was observed in the colonic mucosa and PBMCs of IBD patients. IBD patients showed a lower degree of methylation of the STAT4 promoter than did the healthy controls. Moreover, a significant correlation between risk alleles and methylation status at -172 of the STAT4 promoter was observed, and mRNA levels of STAT4 in IBD patients were correlated inversely with the T-risk allele (rs7574865). CONCLUSIONS: Our data demonstrated that the DNA methylation status of STAT4 is associated with genetic polymorphisms, providing insights into the interactions between genetic and epigenetic aberrances in STAT4 that contribute to the development of IBD.

119. PMID 21861228
BACKGROUND: Alteration of chromosome 9q22.3 region is an early and frequent event in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to understand the association of candidate tumor suppressor genes PHF2, FANCC, PTCH1, and XPA located in this region in the development of HNSCC. METHODS: The alterations (deletion, promoter methylation, mutation, expression) of these genes were analyzed in 65 dysplastic head and neck lesions and 84 primary HNSCC samples. Clinicopathologic correlations were made with alterations of the genes. RESULTS: Overall alterations (deletion, promoter methylation) of FANCC and PTCH1 were high in mild dysplasia and comparable in subsequent stages of tumor progression. However, PHF2 alteration was low in mild dysplasia, but increased in moderate and severe dysplasias. Alterations (deletion, promoter methylation) of FANCC and PTCH1 showed association with each other. Two novel mutations in GLI binding sites of PTCH1 promoter and a novel microsatellite marker hmPTCH1 with four alleles at immediate upstream of the gene were identified. In a case-control study, the (CGG)7 allele of hmPTCH1 was found to be susceptible for HNSCC development. Concordance was seen in the expression (RNA, protein) of these genes with their molecular alterations. CONCLUSIONS: Alterations of FANCC and PTCH1 could be used as molecular marker for early diagnosis and prognosis of HNSCC.

120. PMID 22419656
BACKGROUND: DNA methylation constitutes a key epigenetic mechanism by which cells regulate gene transcription. Among its roles are the dynamic regulation of gene expression, for example, as part of an evolving immune response, and cell differentiation in specialized tissues. Here our aim was to study the impact of differences in methylation patterns in the intestine with regard to inflammatory bowel disease (IBD) susceptibility and activity. METHODS: Having extracted DNA from rectal biopsies, we conducted genome-wide methylation profiling using the HumanMethylation27 BeadChip microarray to identify genes showing evidence of differential methylation between cases of ulcerative colitis and Crohn's disease and healthy controls. Selected methylation signals were validated in an independent replication panel by pyrosequencing. Correlation with gene expression was sought by quantitative real-time polymerase chain reaction (RT-PCR). RESULTS: Multiple genes showed significant evidence of differential methylation, several appearing in both ulcerative colitis and Crohn's disease comparisons including THRAP2, FANCC, GBGT1, DOK2, TNFSF4, TNFSF12, and FUT7. Many more than expected by chance overlapped with genes previously implicated as playing a role in IBD susceptibility in genome-wide association scans, including CARD9, ICAM3, and IL8RB (P < 0.001). Correlation between methylation and gene expression was identified for selected transcripts. CONCLUSIONS: Consistent differences in DNA methylation between IBD cases and controls at regulatory sites within these genes suggest that their altered transcription contributes to IBD pathogenesis. (Inflamm Bowel Dis 2012;).

121. PMID 22284968
BACKGROUND: DNA methylation markers could serve as useful biomarkers, both as markers for progression and for urine-based diagnostic assays. OBJECTIVE: Identify bladder cancer (BCa)-specific methylated DNA sequences for predicting pTa-specific progression and detecting BCa in voided urine. DESIGN, SETTING, AND PARTICIPANTS: Genome-wide methylation analysis was performed on 44 bladder tumours using the Agilent 244K Human CpG Island Microarray (Agilent Technologies, Santa Clara, CA, USA). Validation was done using a custom Illumina 384-plex assay (Illumina, San Diego, CA, USA) in a retrospective group of 77 independent tumours. Markers for progression were identified in pTa (n=24) tumours and validated retrospectively in an independent series of 41 pTa tumours by the SNaPshot method (Applied Biosystems, Foster City, CA, USA). MEASUREMENTS: The percentage of methylation in tumour and urine samples was used to identify markers for detection and related to the end point of progression to muscle-invasive disease with Kaplan-Meier models and multivariate analysis. RESULTS AND LIMITATIONS: In the validation set, methylation of the T-box 2 (TBX2), T-box 3 (TBX3), GATA binding protein 2 (GATA2), and Zic family member 4 (ZIC4) genes was associated with progression to muscle-invasive disease in pTa tumours (p=0.003). Methylation of TBX2 alone showed a sensitivity of 100%, a specificity of 80%, a positive predictive value of 78%, and a negative predictive value of 100%, with an area under the curve of 0.96 (p<0.0001) for predicting progression. Multivariate analysis showed that methylation of TBX3 and GATA2 are independent predictors of progression when compared to clinicopathologic variables (p=0.04 and p=0.03, respectively). The predictive accuracy improved by 23% by adding methylation of TBX2, TBX3, and GATA2 to the European Organisation for Research and Treatment of Cancer risk scores. We further identified and validated 110 CpG islands (CGIs) that are differentially methylated between tumour cells and control urine. The limitation of this study is the small number of patients analysed for testing and validating the prognostic markers. CONCLUSIONS: We have identified four methylation markers that predict progression in pTa tumours, thereby allowing stratification of patients for personalised follow-up. In addition, we identified CGIs that will enable detection of bladder tumours in voided urine.

122. PMID 22253320
BACKGROUND: Epigenetic programming and epigenetic mechanisms driven by environmental factors are thought to play an important role in human health and ageing. Global DNA methylation has been postulated as an epigenetic marker for epidemiological studies as it is reflective of changes in gene expression linked to disease. How epigenetic mechanisms are affected by psychological, sociological and biological determinants of health still remains unclear. The aim of this study was to investigate the relationship between socio-economic and lifestyle factors and epigenetic status, as measured by global DNA methylation content, in the pSoBid cohort, which is characterized by an extreme socio-economic and health gradient. METHODS: DNA was extracted from peripheral blood leukocytes using the Maxwell® 16 System and Maxwell® 16 Blood DNA Purification kit (Promega, UK). Global DNA methylation was assessed using Methylamp™ Global DNA Methylation Quantification Ultra kit (Epigentek, USA). Associations between global DNA methylation and socio-economic and lifestyle factors were investigated in linear regression models. RESULTS: Global DNA hypomethylation was observed in the most socio-economically deprived subjects. Job status demonstrated a similar relationship, with manual workers having 24% lower DNA methylation content than non-manual. Additionally, associations were found between global DNA methylation content and biomarkers of cardiovascular disease (CVD) and inflammation, including fibrinogen and interleukin-6 (IL-6), after adjustment for socio-economic factors. CONCLUSIONS: This study has indicated an association between epigenetic status and socio-economic status (SES). This relationship has direct implications for population health and is reflected in further associations between global DNA methylation content and emerging biomarkers of CVD.

123. PMID 22187122
BACKGROUND: Genome-wide DNA hypomethylation plays a role in genomic instability and carcinogenesis. DNA methylation in the long interspersed nucleotide element 1 L1 (LINE-1) repetitive element is a good indicator of global DNA methylation level. LINE-1 methylation is a useful marker for predicting cancer prognosis and monitoring efficacy of adjuvant therapy. Nonetheless, no study has examined LINE-1 methylation in esophageal squamous cell carcinoma (ESCC). The aim of this study is to assess the precision of sodium bisulfite conversion and polymerase chain reaction (PCR) pyrosequencing assay for evaluating LINE-1 methylation in ESCC. METHODS: To measure assay precision, we performed bisulfite conversion on 5 different DNA specimen aliquots (bisulfite-to-bisulfite) and repeated PCR pyrosequencing five times (run to run). Second, to assess heterogeneity of LINE-1 methylation levels within tumor, we made 5 different tissue sections from one tumor and examined LINE-1 methylation level of each section (section to section). Third, to evaluate LINE-1 methylation status in ESCC, we applied this assay to 30 ESCCs and 30 matched normal esophageal mucosa. RESULTS: Bisulfite-to-bisulfite standard deviation (SD) ranged from 1.44 to 2.90 (median 2.32) in ESCCs; and 0.57 to 4.02 (median 1.23) in normal esophagus. Run-to-run SD ranged from 0.63 to 3.25 (median 1.54) in ESCCs. Section-to-section SD ranged from 1.37 to 3.31 (median 1.94). ESCC tissues showed significantly lower levels of LINE-1 methylation than matched normal mucosa (P < .0001; n = 30). There was no significant relationship between LINE-1 methylation level and tumor stage (P = 0.14). CONCLUSIONS: Bisulfite conversion and PCR pyrosequencing assay can measure LINE-1 methylation in ESCC, and may be useful in clinical and research settings.

124. PMID 22576578
BACKGROUND: Helicobacter pylori has been recognized as a definite carcinogen for gastric cancer (GC); however, the pathogenesis of H. pylori infection remains unclear. Runt-related transcription factor 3 (RUNX3) is a candidate tumor suppressor gene whose deficiency is causally related to GC. However, in H. pylori infection-associated GC, the role of RUNX3 has not been studied. . The association of abnormal methylation with precancerous gastric lesions was evaluated along with the association between RUNX3 methylation and H. pylori infection, and the concordance of methylation levels was investigated between serum and tissues. RESULTS: The results indicated that increasing RUNX3 promoter methylation was correlated with distinct stages of GC progression. GC tissues had the highest methylation proportion (75.2%) compared with precancerous gastric lesions, including chronic atrophic gastritis (15.9%), intestinal metaplasia (36.7%), gastric adenoma (41.8%), and dysplasia (54.9%). H. pylori infection, a major risk factor for GC, contributed to the inactivation of RUNX3 in gastric epithelial cells through promoter hypermethylation. The levels of RUNX3 methylation in serum were in significant concordance with the methylation levels observed in GC tissues (P = .887). CONCLUSIONS: The current findings supported RUNX3 methylation as a risk factors for the carcinogenesis of chronic atrophic gastritis with H. pylori infection and indicated that circulating RUNX3 methylation is a valuable biomarker for the detection of early GC. Cancer 2012. © 2012 American Cancer Society.

125. PMID 21803613
BACKGROUND: Hypermethylation of the PITX2 (paired-like homeodomain transcription factor 2) gene promoter is strongly associated with recurrence after radical prostatectomy. We hypothesized that PITX2 hypermethylation leads to PITX2 silencing and that decreased PITX2 expression is likewise associated with poor prognosis in prostate cancers. Moreover, it is unknown so far how PITX2 hypermethylation relates to other molecular changes in prostate cancer, such as ERG oncogenic activation in about half of all cases. OBJECTIVE: To investigate how PITX2 expression and methylation are related, whether biochemical recurrence after radical prostatectomy can be predicted by PITX2 mRNA levels, and how changes in PITX2 relate to ERG overexpression. MATERIAL AND METHODS: We measured PITX2 and ERG expression in 45 cancerous and 13 benign tissues from patients undergoing radical prostatectomy (age range: 59-74 years). Methylation of the PITX2 gene was analyzed in an extended series of 93 cancers. Follow-up was performed for all patients for a 98-month median period. Additionally, expression and methylation changes of PITX2 were investigated in prostate carcinoma cell lines. Gene expression and methylation were determined by quantitative RT-PCR and methylation-specific PCR, respectively. Biochemical recurrence defined as a total PSA of >0.2 ng/ml on 2 consecutive tests was considered as the surrogate endpoint for survival analysis. RESULTS: : PITX2 expression was significantly and strongly decreased in prostate cancer compared to benign tissues. Cases with decreased PITX2 experienced significantly earlier biochemical recurrences. PITX2 down-regulation was associated with PITX2 promoter hypermethylation in tumor samples and cell lines. PITX2 hypermethylation was more pronounced in cases with ERG overexpression. CONCLUSIONS: : PITX2 down-regulation is associated with promoter hypermethylation and is a good predictor of clinical outcomes after radical prostatectomy. PITX2 methylation might be influenced by oncogenic ERG.

126. PMID 22108905
BACKGROUND: Interleukin-8 (IL-8) also referred to as CXCL8, a member of the CXC chemokine family that attracts neutrophils and other leukocytes, has been associated with cancer. Angiogenesis is a prime regulator of tumour expansion and data support that IL-8 is a potent angiogenic factor. Epigenomic instability has been postulated to play a role for the development of multiple neoplasias including colorectal cancer (CRC). DNA methylation of cytosine residues in CpG dinucleotides leads to transcriptional silencing of associated genes. METHOD: In this study, we comparatively analysed the protein expression of IL-8 in plasma, tumour and paired normal tissue and methylation status of the IL-8 gene to evaluate its impact on CRC. RESULTS: Collectively, by using Luminex technology, we noted a significantly higher IL-8 level in cancer tissue compared to paired normal tissue and that CRC patients exhibit significantly higher plasma levels than healthy controls. Analysed by methylation-specific polymerase chain reaction, we detected IL-8 hypomethylation in 64% of the cancerous tissue cases but no hypomethylation was found in paired normal tissue. We noted that the CRC patients with IL-8 hypomethylation revealed a significant higher level of IL-8 protein in cancerous tissue, which tended to be associated with distant metastasis. We also observed that patients with distant metastasis showed a significantly higher plasma level of IL-8 in relation to patients without distant metastasis. CONCLUSION: Our results suggest that the predominance of high plasma levels of IL-8 in patients with distant metastasis in combination with the hypomethylation of the IL-8 promoter region might be a useful marker of the disease advancement.

127. PMID 22590557
BACKGROUND: Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors. METHODOLOGY/PRINCIPAL FINDINGS: The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n?=?504). A novel validation (n?=?116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes. CONCLUSIONS/ SIGNIFICANCE: The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response.

128. PMID 21983100
. However, an association between the methylation status of TFPI-2 gene and prognosis has not yet been investigated. METHODS: Methylation of TFPI-2 gene was examined in a consecutive series of 133 non-metastatic NSCLC patients using methylation-specific PCR (MSP). Univariate and multivariate analyses were conducted to investigate the association between clinical variables and overall survival time. RESULTS: Methylation of TFPI-2 gene was detected in 36 of 133 patients (27.1%). Of these 36 patients, seventeen individuals (47.2%) carried stage III tumors. The 5-year disease free survival rate among patients carrying methylated TFPI-2 tumors was significantly lower as compared to those with unmethylated TFPI-2 tumors (35.5% versus 6.1%, P<0.0001). Moreover, methylation of TFPI-2 gene was found to be an independent prognostic factor for poor overall survival based on multivariate analysis models (P=0.013), as was age >62 years old (P<0.0001) and TNM stage of disease (P<0.0001). CONCLUSIONS: The results of the present study suggest that methylation of TFPI-2 gene is an independent factor for an unfavorable prognosis in patients with NSCLC.

129. PMID 22359215
BACKGROUND: O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation status was proposed as a prognostic biomarker for patients with glioblastoma. However, the prognostic impact of MGMT in patients with newly diagnosed glioblastoma who receive carmustine-releasing wafers (Gliadel) along with temozolomide (TMZ) is still unknown. METHODS: MGMT promoter methylation status and protein expression were analyzed in formalin-fixed, paraffin-embedded tumor specimens obtained from 111 French patients with newly diagnosed glioblastoma. Patients received the Gliadel wafers followed by radiotherapy plus concomitant and adjuvant TMZ chemotherapy while they were enrolled in a French multicenter prospective study. RESULTS: For the whole cohort, the median overall survival (OS) was 17.5 months, and the progression-free survival was 10.3 months. Patients with tumors that harbored MGMT methylation had a significantly longer OS compared with patients who had wild-type MGMT (21.7 months vs 15.1 months; P = .025). Similarly, patients who had low MGMT protein expression (=15%) had a significantly improved OS compared with patients who had high MGMT expression (27.0 months vs 15.1 months; P = .021). The extent of resection was the strongest clinical predictor of outcome. In multivariate Cox models that were adjusted for sex, performance status, and extent of surgery, both MGMT methylation and protein expression were identified as independent prognosticators, and the finding was validated internally using a bootstrap resampling technique. Discrepancies were identified between protein expression and MGMT methylation status, thus suggesting that the 2 assays probably assess different biologic features. CONCLUSIONS: MGMT promoter methylation status and low MGMT expression both were identified as positive prognosticators in patients with newly diagnosed glioblastoma who underwent surgical resection and received Gliadel wafer implants followed by adjuvant radiotherapy and concomitant oral TMZ chemotherapy (the Stupp protocol). Cancer 2012;. © 2012 American Cancer Society.

130. PMID 22161815
BACKGROUND: Prostate cancer is the most common cancer diagnosis in men and a leading cause of death. Improvements in disease management would have a significant impact and could be facilitated by the development of biomarkers, whether for diagnostic, prognostic, or predictive purposes. The blood-based prostate biomarker PSA has been part of clinical practice for over two decades, although it is surrounded by controversy. While debates of usefulness are ongoing, alternatives should be explored. Particularly with recent recommendations against routine PSA-testing, the time is ripe to explore promising biomarkers to yield a more efficient and accurate screening for detection and management of prostate cancer. Epigenetic changes, more specifically DNA methylation, are amongst the most common alterations in human cancer. These changes are associated with transcriptional silencing of genes, leading to an altered cellular biology. METHODS: One gene in particular, GSTP1, has been widely studied in prostate cancer. Therefore a meta-analysis has been conducted to examine the role of this and other genes and the potential contribution to prostate cancer management and screening refinement. RESULTS: More than 30 independent, peer reviewed studies have reported a consistently high sensitivity and specificity of GSTP1 hypermethylation in prostatectomy or biopsy tissue. The meta-analysis combined and compared these results. CONCLUSIONS: GSTP1 methylation detection can serve an important role in prostate cancer managment. The meta-analysis clearly confirmed a link between tissue DNA hypermethylation of this and other genes and prostate cancer. Detection of DNA methylation in genes, including GSTP1, could serve an important role in clinical practice. Prostate © 2011 Wiley Periodicals, Inc.

131. PMID 22106032
BACKGROUND: Silencing of tumor suppressor genes plays a vital role in head and neck carcinogenesis. In this study we aimed to evaluate aberrant p16(INK4a) gene promoter methylation in patients with head and neck cancer. METHODS: Methylation of the gene was investigated by bisulfite modification/methylation-specific polymerase chain reaction and gene expression levels were analyzed by quantitative reverse transcription-polymerase chain reaction in tumors and matched normal tissue samples from Turkish patients with head and neck cancer. RESULTS: The promoter region of the p16(INK4a) gene was methylated in 67.5% and 28.6% of the primary tumors and the corresponding normal tissue, respectively. This difference was highly significant. In concordance, p16(INK4a) gene expression was downregulated in 67.5% of the tumor samples. Methylation and the absence of expression in the tumors were observed in 48% of the patients. CONCLUSIONS: Our data indicate that methylation of the p16(INK4a) gene is a frequent event in primary head and neck cancer and that it plays a major role in the silencing of p16(INK4a) gene expression during tumor development. © 2011 Wiley Periodicals, Inc. Head Neck, 2011.

132. PMID 21226002
BACKGROUND:: DNA methylation is a fundamental epigenetic event associated with physiologic and pathologic conditions, including cancer. Hypermethylation of CpG islands at active gene promoters leads to transcriptional repression, whereas hypomethylation is associated with gene overexpression. The aim of this study was to identify genes in adenoid cystic carcinoma (ACC) of salivary gland strongly deregulated by epigenetic CpG island methylation, to validate selected genes by conventional techniques, and to correlate the findings with clinicopathologic factors. METHODS:: The authors analyzed 16 matched normal and tumor tissues for aberrant DNA methylation using the methylated CpG island amplification and microarray method and the pyrosequencing technique. RESULTS:: Microarray analysis showed hypomethylation in 7 and hypermethylation in 32 CpG islands. Hypomethylation was identified in CpG islands near FBXO17, PHKG1, LOXL1, DOCK1, and PARVG. Hypermethylation was identified near genes encoding predominantly transcription factors (EN1, FOXE1, GBX2, FOXL1, TBX4, MEIS1, LBX2, NR2F2, POU3F3, IRX3, TFAP2C, NKX2-4, PITX1, NKX2-5), and 13 genes with different functions (MT1H, EPHX3, AQPEP, BCL2L11, SLC35D3, S1PR5, PNLIPRP1, CLIC6, RASAL, XRN2, GSTM5, FNDC1, INSRR). Four CpG islands by EN1, FOXE1, TBX4, and PITX1 were validated by pyrosequencing. CONCLUSIONS:: The highly methylated genes in tumor versus normal tissue are linked to developmental, apoptotic, and other fundamental cellular pathways, suggesting that down-regulation of these genes is associated with ACC development and progression. With EN1 hypermethylation showing potential as a possible biomarker for ACC in salivary gland, the biological and therapeutic implications of these findings require further preclinical investigations. Cancer 2011. © 2011 American Cancer Society.

133. PMID 22674207
BACKGROUNDThere is an increased incidence of rare imprinting disorders associated with assisted reproduction technologies (ARTs). The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that the techniques themselves may predispose embryos to acquire imprinting errors and diseases. However, it is still unknown at what point(s) these imprinting errors arise, or the risk factors.METHODSIn 2009 we conducted a Japanese nationwide epidemiological study of four well-known imprinting diseases to determine any association with ART. Using bisulfite sequencing, we examine the DNA methylation status of 22 gametic differentially methylated regions (gDMRs) located within the known imprinted loci in patients with Beckwith-Wiedemann syndrome (BWS, n= 1) and also Silver-Russell syndrome (SRS, n= 5) born after ART, and compared these with patients conceived naturally.RESULTSWe found a 10-fold increased frequency of BWS and SRS associated with ART. The majority of ART cases showed aberrant DNA methylation patterns at multiple imprinted loci both maternal and paternal gDMRs (5/6), with both hyper- and hypomethylation events (5/6) and also mosaic methylation errors (5/6). Although our study may have been limited by a small sample number, the fact that many of the changes were mosaic suggested that they occurred after fertilization. In contrast, few of the patients who were conceived naturally exhibited a similar pattern of mosaic alterations. The differences in methylation patterns between the patients who were conceived naturally or after ART did not manifest due to the differences in the disease phenotypes in these imprinting disorders.CONCLUSIONA possible association between ART and BWS/SRS was found, and we observed a more widespread disruption of genomic imprints after ART. The increased frequency of imprinting disorders after ART is perhaps not surprising given the major epigenetic events that take place during early development at a time when the epigenome is most vulnerable.

134. PMID 20394502
BLU was recently characterized as a novel tumor suppressor gene (TSG), and was epigenetically silenced in some tumor cell lines and primary tumor samples. High-resolution melting (HRM) analysis has been used as a novel tool for analysis of promoter methylation. We used HRM analysis to detect the methylation levels of BLU gene in 100 gastric, 100 colorectal, and 70 pancreatic cancers, and also in an equal number of adjacent normal tissues for all. The frequency of BLU methylation in all three types of cancer was significantly higher than that in normal tissues. And the expression levels of BLU were inversely correlated with methylation levels.

135. PMID 18642075
BRCA1/BRCA2 germline mutations substantially increase breast and ovarian cancer risk, yet penetrance is incomplete. We hypothesized that germline epigenetic gene silencing may affect mutant BRCA1/2 penetrance. To test this notion, we determined the methylation status, using methylation-specific quantitative PCR of the promoter in putative modifier genes: BRCA1, BRCA2, ATM, ATR and P53 in Jewish BRCA1/BRCA2 mutation carriers with (n = 41) or without (n = 48) breast cancer, in sporadic breast cancer (n = 52), and healthy controls (n = 89). Promoter hypermethylation was detected only in the BRCA1 promotor in 5.6-7.3% in each of the four subsets of participants, regardless of health and BRCA1/2 status.Germline promoter hypermethylation in the BRCA1 gene can be detected in about 5% of the female Israeli Jewish population, regardless of the BRCA1/2 status. The significance of this observation is yet to be determined.

136. PMID 22057372
Background/Aims: Epigenetic regulations play a role in the development and progression of cancer. Therefore, discovering novel epigenetically regulated genes could provide useful information in understanding cancer. Lamin A/C is an intermediate filament protein whose expression is reported to be suppressed in tissues of gastro-intestinal malignancies. We examined expression of lamin A/C in gastric and colorectal cancer cell lines and its association with DNA methylation. Methodology: The methylation status of CpG island in 19 gastric, 5 colorectal cancer cells and 1 normal colon cell line were examined with methylation-specific PCR using paired methylated and unmethylated primers. The level of mRNA expression of lamin A/C was detected using RT-PCR. Results: Eighteen gastric cancer cell lines showed 95% unmethylation of lamin A/C and 1 cell line showed partial methylation. In colorectal cancer, only 1 out of 5 cancer cell lines (20%) was partially methylated and the remaining cell lines, including 1 normal colon cell line was unmethylated. With RT-PCR, all cell lines demonstrated mRNA expression of lamin A/C regardless of methylation status. Conclusions: We observed that the expression of lamin A/C was not suppressed in gastrointestinal cancer cell lines different from hematologic malignant cells and it is not regulated through DNA methylation.

137. PMID 22626786
Background/Aims: To observe the promoter methylation of esophageal cancer-related gene 4 (ECRG4) in gastric cancer tissues and explore its clinical significance. Methodology: ECRG4 promoter methylation was detected with methylation-specific PCR in 49 samples of gastric cancer tissues, 30 samples of peri-cancerous tissues and 15 samples of normal tissues. The relations of ECRG4 promoter methylation to pathology, age, gender and lymph node metastasis were analyzed. Results: The rate of ECRG4 promoter methylation was higher in gastric cancer tissues (69.4% (34/49)) and peri-cancerous tissues (53.3% (16/30)) than in normal tissues (6.7% (1/15)) (p<0.01). The rate of ECRG4 promoter methylation was higher in stage III+IV (80% (24/30)) than in stage I+II gastric cancer tissues (52.6% (10/19)) (p<0.05). The rate of ECRG4 promoter methylation was not related to age, gender and lymph node metastasis (all p>0.05). Conclusions: Aberrant ECRG4 promoter methylation may be used to monitor early gastric cancer and predict pathological staging. ECRG4 may become a molecular therapeutic target against gastric cancer.

138. PMID 22288845
Background: Cytogenetic, molecular and epigenetic changes are all known to take place in the pathogenesis of meningiomas. In this study, we aimed at investing methylation of MGMT (DNA repair), CDKN2A (cell cycle control), GSTP1 (detoxification), and THBS1 (angiogenesis inhibitor) genes, which are known to be unmethylated in normal tissue, in meningioma samples. Materials and Methods: Methylation specific polymerase chain reaction was used to study promoter regions methylation of genes in 36 patient samples. Results: Methylation in promoter regions of MGMT, CDKN2A, GSTP1, and THBS1 genes were found in 11.1%, 8.3%, 2.8%, and 0% of the cases, respectively. About 19.4% of cases revealed promoter methylation of at least a single gene, whereas only 2.8% of cases revealed methylation of more than one gene. Based on their World Health Organization 2007 grade; 6.3% of grade I cases, 35.3% of grade II cases, and 33.3% of grade III cases showed hypermethylation in the promoter regions of the genes studied. No statistically significant relation was found between promoter zone methylation and factors such as age, sex, histopathology, grade, or recurrence. Conclusions: Further research on promoter zone methylation will help expose the methylation profile and pathogenesis of meningiomas, which will consequently guide to a deeper understanding of the pathogenesis of the disease, thus ensuring a better understanding of the prognosis and considering novel treatment options.

139. PMID 20890024
Background: Epstein-Barr virus (EBV)-associated gastric carcinomas (GC) constitute a distinct clinicopathological entity of gastric cancer. In order to determine underlying distinct aberrant promoter methylation we tested cardiac and non-cardiac GC with regard to the presence of EBV.Methods: One hundred GC were tested by RNA-in situ hybridization for the presence of EBV by EBV-encoded small RNA (EBER). Aberrant promoter methylation was investigated by methylation-specific real-time PCR for p16, p14, APC and hMLH1. P16 protein expression was assessed by immunohistochemistry.Results: In our selected study cohort, EBER-transcripts were detected in 19.6% (18/92) of GC. EBV-positive GC revealed significantly more often gene hypermethylation of p16, p14 and APC (p<0.0001, p<0.0001 and p=0.02, respectively) than EBV-negative GC. The majority of GC with p16 hypermethylation showed a p16 protein loss (22/28). In contrast, no correlation between the presence of EBV and hMLH1 hypermethylation was found (p=0.7). EBV-positive GC showed a trend towards non-cardiac location (p=0.06) and lower stages (I/II) according to the WHO (p=0.05).Conclusions: Hypermethylation of tumor suppressor genes is significantly more frequent in EBV-associated GC compared to EBV-negative GC. Our data add new insights to the role of EBV in gastric carcinogenesis and underline that EBV associated GC comprise a distinct molecular-pathologic as well as a distinct clinicopathological entity of GC.

140. PMID 22562770
Background: Maternal factors are implicated in the onset of childhood asthma. Differentiation of naïve CD4+ T lymphocytes into pro-allergic T helper 2 cells induces interleukin (IL)4 expression and inhibits interferon (IFN)? expression accompanied by concordant methylation changes in the promoters of these genes. However, it has yet to be established if maternal exposure to polycyclic aromatic hydrocarbons (PAHs) can alter these gene promoters epigenetically during fetal development. Objectives: This study sought to elucidate the relationship between maternal PAH exposure and promoter methylation status of IFN? and IL4. Methods: We assessed the effects of benzo[a]pyrene (BaP), a representative airborne PAH, on the methylation status of the IFN? and IL4 promoters in Jurkat cells and two lung adenocarcinoma cell lines, and on gene expression. In addition we evaluated methylation status of the IFN? promoter in cord white blood cells from 53 participants in the Columbia Center for Children's Environmental Health cohort. Maternal PAH exposure was estimated by personal air monitoring during pregnancy. Results: In vitro exposure of the cell models to low, non-cytotoxic doses (0.1 and 1 nM) of BaP elicited increased promoter hypermethylation and reduced expression of IFN?, but not IL4. IFN? promoter methylation in cord white blood cells was associated with maternal PAH exposure in the cohort study subsample. Conclusion: Consistent with the results for the cell lines, maternal exposure to PAHs was associated with hypermethylation of IFN? in cord blood DNA from cohort children. These findings support a potential role of epigenetics in fetal reprogramming by PAH-induced environmental diseases.

141. PMID 22122521
Background: Methylation status of the cytokine genes may play a role in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA) and periodontitis. This study was undertaken to evaluate whether the DNA methylation profile of the interleukin-6 (IL-6) gene promoter was unique to subjects with RA and periodontitis. Methods: The study subjects consisted of 30 RA patients, 30 chronic periodontitis (CP) patients, and 30 age-, gender-, smoking status-balanced healthy controls. Genomic DNA isolated from peripheral blood was modified by sodium bisulfite, and analyzed for DNA methylation levels of IL-6 gene with direct sequencing. Levels of IL-6 were determined by an enzyme-linked immunosorbent assay (ELISA). Results: The region of IL-6 gene promoter from -1200 bp to +27 bp was shown to contain 19 CpG motifs. The methylation levels of the CpG motif at -74 bp were significantly lower in patients with RA and CP than those in controls (P = 0.0001, respectively). Both levels of serum IL-6 and IL-6 production by mononuclear cells were significantly different between individuals with and without the methylation at -74 bp (P = 0.03, respectively). The +19 bp motif exhibited differential levels of the methylation among the groups, which was not associated with serum levels of IL-6. Other 17 CpG motifs exhibited comparable levels of the methylation among the groups. Conclusions: These results suggest that hypomethylated status of a single CpG in the IL-6 promoter region may lead to increased levels of serum IL-6, implicating a role in the pathogenesis of RA and CP.

142. PMID 22674304
Background: The DNA repair enzyme O<formula>^{6}</formula>-methylguanine-DNA methyltransferase (MGMT) confers therapeutic resistance to DNA alkylating agents, including temozolomide. It is largely believed that MGMT promoter methylation is associated with down regulation of MGMT transcription and corresponding protein expression, thereby predisposing tumor cells to the toxic effect of temozolomide. Here we rigorously examined this underlying assumption.Methods: We examined the correlation between MGMT promoter methylation, transcription, and protein expression using The Cancer Genome Atlas (TCGA) glioblastoma database as well as an independent collection of glioblastoma specimens. Results: In both analyses, we found that MGMT promoter methylation status correlates well with low MGMT mRNA levels (p=0.04). On the other hand, glioblastomas with unmethylated MGMT promoters exhibited a wide range of MGMT mRNA expression. Intriguingly, the MGMT mRNA levels correlated poorly with MGMT protein levels by Western blotting (R<formula>^{2}</formula>=0.04, p=0.34) or by ImmunoHistoChemical (IHC) stain quantitation (R<formula>^{2}</formula>=0.02, p=0.50). To exclude the possibility that the poor correlation was due to substandard specimens, we determined the mRNA and protein levels of Colony Stimulating Factor 1 (CSF1), a gene previously shown to exhibit excellent mRNA/protein correlation. In contrast to MGMT, the mRNA level of CSF1 correlated well with the protein level (R<formula>^{2}</formula>=0.47, p=0.001). Importantly, long-term passaged glioblastoma cell lines with comparable MGMT transcript levels differed in MGMT protein levels, suggesting mechanisms of post-transcriptional regulation. Accordingly, the correlation between MGMT promoter methylation and MGMT protein expression was poor (p=0.27). In silico analysis predicted potential binding sites for several miRNA within the 3'UTR of MGMT, suggesting a mechanism for the post-transcriptional of MGMT.Conclusion: Our results suggest mechanisms such as miRNA mediated regulation for post-transcriptional regulation of MGMT. Identification of these mechanisms should enhance the value of MGMT based prognostic or predictive biomarker strategies.

143. PMID 22655257
Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10?year survival rate for CIMP-high patients [22.6% (95%CI: 7-43)] was significantly lower than for CIMP-L or CIMP-negative (p?=?0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

144. PMID 20696638
Background: Tumor-related methylated DNA and circulating tumor cells (CTC) in the peripheral blood might be of prognostic importance in breast cancer. Thus, the aim of our study was to examine free methylated DNA and CTC in the blood from breast cancer patients and to correlate it with clinicopathological features known to influence prognosis. - Materials and Methods: We prospectively obtained serum samples from 85 patients with breast cancer and 22 healthy volunteers. Sera were analysed by methylation specific PCR (MethyLight PCR) for five genes: adenomatous polyposis coli (APC), ras association domain family protein 1A (RASSF1A), estrogen receptor 1 (ESR1), CDKN2A (p16) and glutathione s-transferase pi 1 (GSTP1). Beta actin (ACTB) served as control. In parallel matched peripheral blood of 63 patients was used to assay for circulating tumor cells in the peripheral blood by a modified immunomagnetic AdnaTest BreastCancerSelect with PCR detection for EPCAM, MUC1, MGB1 and SPDEF. - Results: A hypermethylation in the APC gene in 29% (25/85), in RASSF1A in 26% (22/85), in GSTP1 in 18% (14/76) and in ESR1 in 38% (32/85) of all breast cancer patients was detected. No hypermethylation of CDKN2A was found (0/25). Blood samples of patients were defined CTC positive by detecting the EPCAM 13% (8/63), MUC1 16% (10/63), MGB 9% (5/55), SPDEF 12% (7/58) and in 27% detecting one or more genes (15/55). A significant difference was seen in methylated APC DNA between cancer patients and healthy volunteers. Moreover, methylated APC, RASSF1 and CTC were significantly different in metastatic versus non-metastatic disease. In addition, the presence of methylated APC, RASSF1A and CTC correlated significantly with AJCC-staging (p = 0.001, p = 0.031 and 0.002, respectively). High incidences of methylations were found for the genes RASSF1 and ESR1 in healthy individuals (both 23% 5/22). Methylated GSTP1 was predominantly found in the serum of patients with large primaries (p = 0.023) and was highly significantly correlated with positive Her2/neu status (p = 0.003). Elevated serum CA15.3 was strongly correlated with methylated APC and CTC detection (both p = 0.000). Methylated ESR1 failed to exhibit significant correlations with any of the above mentioned parameters. The presence of CTC in peripheral blood was significantly associated with methylated APC (p = 0.012) and methylated GSTP1 (p = 0.001). - Conclusion: The detection of methylated APC and GSTP1 DNA in serum correlated with the presence of CTC in the blood of breast cancer patients. Both methylated DNA and CTC correlated with a more aggressive tumor biology and advanced disease.

145. PMID 22644305
Background:Calcium is an important intracellular messenger that mediates many biological processes that are relevant to the malignant process. Calcium ion channels are key in controlling the intracellular calcium, and little is known about their role in human cancer.Methods:We used qPCR and pyrosequencing to investigate expression and epigenetic regulation of the calcium channel regulatory subunit a(2)d-3 (CACNA2D3) in breast cancer cell lines, primary cancers and metastatic lesions.Results:Expression of CACNA2D3 mRNA is regulated in breast cancer cell lines by methylation in the CpG island located in the 5' regulatory region of the gene. Expression is upregulated by azacytidine (AZA) in cells with CpG island methylation but unaffected in cells lacking methylation. In primary breast carcinomas, methylation is more common in cancers, which subsequently relapse with loco-regional and, particularly, visceral metastatic disease in both oestrogen receptor-a (ER)-positive and -negative cases. Furthermore, CACNA2D3 CpG island is frequently methylated in breast cancer that has metastasised to the central nervous system.Conclusion:Methylation-dependent transcriptional silencing of CACNA2D3 may contribute to the metastatic phenotype of breast cancer. Analysis of methylation in the CACNA2D3 CpG island may have potential as a biomarker for risk of development of metastatic disease.British Journal of Cancer advance online publication, 29 May 2012; doi:10.1038/bjc.2012.231 www.bjcancer.com.

146. PMID 22596233
Background:DNA methylation is an important epigenetic mechanism in prostate cancer (PCa) progression. Given the role of even-skipped homeobox 1 (EVX1) in the regulation of multiple genes during embryogenesis, we postulated that EVX1 methylation is altered in PCa progression.Methods:Bisulphite sequencing and quantitative MethyLight were used to assess methylation in human prostate epithelial cells, four PCa cell lines, liver, lung, spleen, kidney, 35 paired tumour and tumour-associated benign tissues, and 11 normal prostate tissues. Prostate cancer cell lines were treated with 5-azacytidine (AzaC) or trichostatin A (TSA), and expression of EVX1 transcript and variants was assessed by qPCR. Hypermethylation was compared with clinicopathological features in a validation set of 58 patients using microarray.Results:Even-skipped homeobox 1 hypermethylation was observed in all four PCa cell lines and 57% of tumours. High-grade tumours exhibited increased methylation compared with intermediate-grade tumours. Even-skipped homeobox 1 expression was induced in PCa cell lines after treatment with AzaC or TSA. In the validation set, 83% of tumours were hypermethylated and hypermethylation was associated with worse recurrence-free survival.Conclusion:In this first evaluation of EVX1 methylation in human cancer, EVX1 is one of the most commonly hypermethylated genes observed in PCa and predicted treatment failure in moderate risk patients.British Journal of Cancer advance online publication, 17 May 2012; doi:10.1038/bjc.2012.216 www.bjcancer.com.

147. PMID 22568967
Background:In the preceding decade, various studies on glioblastoma (Gb) demonstrated that signatures obtained from gene expression microarrays correlate better with survival than with histopathological classification. However, there is not a universal consensus formula to predict patient survival.Methods:We developed a gene signature using the expression profile of 47 Gbs through an unsupervised procedure and two groups were obtained. Subsequent to a training procedure through leave-one-out cross-validation, we fitted a discriminant (linear discriminant analysis (LDA)) equation using the four most discriminant probesets. This was repeated for two other published signatures and the performance of LDA equations was evaluated on an independent test set, which contained status of IDH1 mutation, EGFR amplification, MGMT methylation and gene VEGF expression, among other clinical and molecular information.Results:The unsupervised local signature was composed of 69 probesets and clearly defined two Gb groups, which would agree with primary and secondary Gbs. This hypothesis was confirmed by predicting cases from the independent data set using the equations developed by us. The high survival group predicted by equations based on our local and one of the published signatures contained a significantly higher percentage of cases displaying IDH1 mutation and non-amplification of EGFR. In contrast, only the equation based on the published signature showed in the poor survival group a significant high percentage of cases displaying a hypothesised methylation of MGMT gene promoter and overexpression of gene VEGF.Conclusion:We have produced a robust equation to confidently discriminate Gb subtypes based in the normalised expression level of only four genes.British Journal of Cancer advance online publication, 8 May 2012; doi:10.1038/bjc.2012.174 www.bjcancer.com.

148. PMID 22052064
BackgroundGastric cancer (GC) is a highly prevalent disease, being the fourth most common cancer and the second leading cause of cancer-associated deaths worldwide. Although many genes have been implicated in its development, many cases remain genetically unexplained. Hence, there is an urgent need to find new disease-related genes.MethodsA transgenic Drosophila model was used to screen for novel genes putatively involved in GC. The authors evaluated the expression of the most interesting candidates in GC cell lines and primary tumours by semi-quantitative reverse transcription PCR, dissected the molecular mechanisms responsible for the deregulation of the most relevant one, and analysed its functional role in vitro and in a chicken embryo model.ResultsSix candidate genes were identified, of which cytoplasmic polyadenylation element binding protein 1 (CPEB1) was downregulated in all GC cell lines and in 11 of 12 primary GC tumours. The pivotal CPEB1 promoter CpG site was determined, and it was found that methylation at this 79th CpG site was associated with CPEB1 silencing in GC cell lines and primary tumours. It was also discovered that methylation of this site was significantly more prevalent in diffuse type GC (p=0.007) and in cases with lymph node metastases (p=0.042). In vitro, CPEB1 impaired invasion. Its antiangiogenic role was also discovered, which was associated with downregulation of MMP14 and VEGFA.ConclusionsThe first evidence of CPEB1 involvement in GC is presented, along with the molecular mechanism underlying the regulation of its expression and its potential role in invasion and angiogenesis.

149. PMID 20849535
Basal cell carcinoma (BCC) is the most common form of skin cancer. Mutations of the PTCH hallmark gene are detected in about 50-60% of BCCs, which raises the question whether other mechanisms such as promoter methylation can inactivate PTCH. Therefore, we performed methylation analysis of the PTCH promoter in a total of 56 BCCs. The sensitivity of three different methods, including direct bisulphite sequencing PCR, MethyLight and high-resolution melting (HRM), was applied and compared. We found that HRM analysis of DNA from fresh tissue [rather than formalin-fixed and paraffin-embedded tissue (FFPE)] was the most sensitive method to detect methylation. Low-level methylation of the PTCH promoter was detected in five out of 16 analysed BCCs (31%) on DNA from fresh tissue but only in two (13%) samples on short-time stored FFPE DNA from the very same tumors. In contrast, we were unable to detect methylation by HRM on long-time stored DNA in any of the remaining 40 BCC samples. Our data suggest that (i) HRM on DNA extracted from fresh tissue is the most sensitive method to detect methylation and (ii) methylation of the PTCH promoter may only play a minor role in BCC carcinogenesis.

150. PMID 21625942
Basal-like breast cancer (BLBC) appears to be characterized by a relatively unfavorable prognosis and lack of a specific therapeutic target. Estrogen receptor-alpha (ERa) has been widely accepted as a prognostic marker and a predictor for endocrine therapy response of breast cancer. This study aimed to clarify the correlation of ERa methylation with the pathogenesis and clinicopathological significance of sporadic BLBC of Chinese women without a family history of the cancer. The methylation of ERa promoter was investigated in genomic DNA of 60 sporadic BLBC with 108 cases of non-BLBC as control by methylation-specific polymerase chain reaction. We also investigated the expression of p53, breast cancer gene (BRCA)-1, and BRCA-2 by immunohistochemistry and analyzed the correlation between ERa methylation and clinicopathological features of BLBC. ERa methylation was observed in 48 of 60 (80.0%) sporadic BLBC, which was significantly higher than in sporadic non-BLBC cancer (47/108, 43.5%; ?2=20.89, p<0.01). No correlation was found between the ERa methylation and age and menopausal status, while it was significantly associated with lymph node metastasis, tumor stage, nuclear p53 accumulation, and BRCA-1 and BRCA-2 expression in sporadic BLBC. The ERa methylation status in basal-like breast cancer was significantly higher than in sporadic non-basal-like breast cancer. It was associated with the lymph node metastasis, tumor stage, p53 nuclear accumulation, and BRCA-1 and BRCA-2 expression in BLBC. It may play an important role in BLBC pathogenesis.

151. PMID 18946749
Basal-like breast cancers are characterized by their unique expression profile, with the frequent loss of BRCA1, caused by such mechanisms as promoter methylation and the overexpression of high-mobility group proteins of the A type 1 or inhibitor of differentiation 4. Clinicopathologically, basal-like cancers are estrogen receptor-, progesterone receptor-, and human epidermal growth factor receptor type 2 (HER2)-negative; they are of high grade and have a poor prognosis. The fundamental similarity between BRCA1-mutated and basal-like cancers indicates that disruption of BRCA1 may be an essential common initial pathogenic event. Furthermore, p53 mutation and EGFR overexpression occur similarly in BRCA1-mutated and basal-like cancers; these shared alterations provide very important information for understanding not only the genetic and epigenetic carcinogenic pathways in these tumors but also therapeutic strategies. Despite the limited available clinical data about response to chemotherapy, anthracycline-based chemotherapy seems to be effective in a distinct subset of basal-like cancers. Both disrupted BRCA1 and overexpressed topoisomerase II-alpha possibly found in basal-like cancers are speculated to be associated with their increased sensitivity to anthracyclines. If these tumors respond to this chemotherapy, a favorable prognosis might be expected; however, in patients who do not respond, the prognosis is poor. Currently, the sensitivity of basal-like cancers to taxanes is not clear, but considering that these tumors have disrupted mitotic checkpoint function, a poor response may be suggested. On the basis of in vitro studies, BRCA1-disrupted basal-like cancers may be sensitive to DNA-damaging agents including platinum-based compounds, topoisomerase I and II inhibitors, and alkylating agents. In future, new therapeutic approaches for patients with basal-like cancers that are unlikely to respond to chemotherapy should focus on molecules that are involved in the pathogenic pathways of this disease.

152. PMID 18395974
. At the time of surgery, DNA levels were higher in tumor patients than in healthy donors, and K-Ras and p16INK4a alterations were detected in 7 and 11 cancers respectively, and in all related plasma samples. During the follow-up, plasma DNA levels decrease progressively but rapidly increased when a relapse occurred, whereas K-Ras and p16INK4a alterations were detected only in relapsed patients. Therefore, combined quantitative and qualitative analyses of plasma DNA confirm the presence of colorectal cancer, define disease-free status and indicate the presence of relapse.

153. PMID 21724842
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ~68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

154. PMID 19268989
Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. . We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78-5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age-phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. ACCESSION NUMBERS: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603.

155. PMID 20959287
Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein-DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein-DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.

156. PMID 21836020
Bladder cancer is often associated with recurrence and progression to invasive metastatic disease that have palliative therapeutic options. The use of traditional chemotherapeutic agents for bladder cancer management often suffers from toxicity and resistance concerns. This emphasizes the need for development of safer, natural, nontoxic compounds as chemotherapeutic/chemopreventive agents. Curcumin (diferuloylmethane) is a natural compound that has been known to possess anticancer properties in various cancers, including bladder cancer. However, the biological targets of curcumin are not well defined. Recently, it has been proposed that curcumin may mediate epigenetic modulation of expression of microRNAs (miRNA). In this article, we define for the first time, that curcumin directly induces a tumor-suppressive miRNA, miR-203, in bladder cancer. miR-203 is frequently downregulated in bladder cancer due to DNA hypermethylation of its promoter. We studied the functional significance of miR-203 in bladder cancer cell lines and found that miR-203 has tumor suppressive properties. Also, we define Akt2 and Src as novel miR-203 targets in bladder cancer. Curcumin induces hypomethylation of the miR-203 promoter and subsequent upregulation of miR-203 expression. This leads to downregulation of miR-203 target genes Akt2 and Src that culminates in decreased proliferation and increased apoptosis of bladder cancer cells. This is the first report that shows a direct effect of curcumin on inducing epigenetic changes at a miRNA promoter with direct biological consequences. Our study suggests that curcumin may offer a therapeutic advantage in the clinical management of refractory bladder cancer over other standard treatment modalities.

157. PMID 21896932
Blood-based methylated DNA gene RARbeta2 in circulating plasma (cir DNA) and one associated with blood cell surface were assayed in patients with non small cell lung cancer before and after combined treatment. The levels in both appeared to be significantly higher than in healthy subjects. Enhanced levels prior to treatment were associated with greater advancement of the disease and unfavorable prognosis (overall survival). After two courses of neoadjuvant therapy plus surgery methylation indices fell down to match those in healthy subjects. Our data may be instrumental in working out additional criteria to be used in diagnosis, prognosis and follow-up of patients with non small cell lung cancer.

158. PMID 18688853
Bone morphogenetic proteins (BMP), belonging to the transforming growth factor-beta superfamily, are multifunctional regulators of cell proliferation, differentiation and apoptosis in various types of malignant cells. In this study, we investigated BMP-6 promoter methylation in patients with various types of leukemias. The BMP-6 methylation was found preferentially in adult T-cell leukemia (ATL) (49 of 60, 82%) compared with other types of leukemias studied including acute myeloid leukemia (3 of 67, 5%), acute lymphoblastic leukemia (6 of 38, 16%) and chronic lymphocytic leukemia (1 of 21, 5%). Among subtypes of ATL, the BMP-6 gene was more frequently methylated in aggressive ATL forms of acute (96%) and lymphoma (94%) types than less malignant chronic ATL (44%) and smoldering ATL (20%). We also analyzed the methylation status of peripheral blood mononuclear cells from healthy donors and nonmalignant lymph nodes with reactive lymphadenopathy, none of which showed detectable BMP-6 methylation in this study. The BMP-6 methyaltion was correlated with decreased mRNA transcript and protein expression. Expression of BMP-6 was restored by the demethylating agent 5-aza-2'-deoxycytidine, suggesting that methylation was associated with the transcriptional silencing. Serial analysis demonstrated an increasing methylation of CpG sites in the BMP-6 promoter and the resultant suppression of BMP-6 expression as ATL progressed. These findings suggested that BMP-6 promoter methylation is likely to be a common epigenetic event at later stages of ATL and that the methylation profiles may be useful for the staging of ATL as well as for evaluation of the individual risk of developing the disease.

159. PMID 22086350
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-ß superfamily, are multifunctional signaling molecules that have become of increasing interest in cancer research. Recent observations suggest that alterations in BMPs and BMP signaling are associated with tumorigenesis and disease progression in various types of malignancies. This study investigated the methylation status of the BMP6 gene promoter in various types of plasma cell proliferative disorders by combined bisulfite restriction analysis. . The BMP6 methylation-positive MEP was an aggressive form of MM with extremely high levels of serum lactate dehydrogenase (LDH). Bisulfite sequencing analysis confirmed intensive methylation at CpG sites of the BMP6 promoter region. The methylation of BMP6 was correlated with decreased levels of mRNA transcripts. Expression of BMP6 was restored by the demethylating agent 5-aza-2'-deoxycytidine, suggesting that the methylation is associated with transcriptional silencing. Our study implied that BMP6 promoter methylation is not a common event in MMs, but occurs in aggressive MEP. These findings warrant further investigation to clarify whether BMP6 methylation together with elevated LDH could be a marker of poor prognosis in MEP patients who should be considered for early intensive treatment.

160. PMID 22139575
Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p = 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p = 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD.

161. PMID 21884980
Both EZH2 and NF-?B contribute to aggressive breast cancer, yet whether the two oncogenic factors have functional crosstalk in breast cancer is unknown. Here, we uncover an unexpected role of EZH2 in conferring the constitutive activation of NF-?B target gene expression in ER-negative basal-like breast cancer cells. This function of EZH2 is independent of its histone methyltransferase activity but requires the physical interaction with RelA/RelB to promote the expression of NF-?B targets. Intriguingly, EZH2 acts oppositely in ER-positive luminal-like breast cancer cells and represses NF-?B target gene expression by interacting with ER and directing repressive histone methylation on their promoters. Thus, EZH2 functions as a double-facet molecule in breast cancers, either as a transcriptional activator or repressor of NF-?B targets, depending on the cellular context. These findings reveal an additional mechanism by which EZH2 promotes breast cancer progression and underscore the need for developing context-specific strategy for therapeutic targeting of EZH2 in breast cancers.

162. PMID 21622623
Both maspin and glutathione S-transferase pi (GSTp) are implicated as tumor suppressors and downregulated in human prostate cancer. It is well established that GSTp downregulation is through DNA methylation-based silencing. We report here that maspin expression in prostate cancer cell line DU145 reversed GSTp DNA methylation, as measured by methylation- specific PCR, MethyLight assay, and bisulfite sequencing. The effect of maspin on GSTp expression was similar to that of the combination of a synthetic histone deacetylase (HDAC) inhibitor and DNA methylation inhibitor 5-aza-2'-deoxycytidine. Maspin expression also led to an increased level of acetylated histone 3, decreased level of methyl transferase, and methyl-CpG-binding domain proteins at the site of demethylated GSTp promoter DNA. Earlier, we have shown that maspin inhibits HDAC1. In PC3 cells, where both maspin and GSTp are expressed at a reduced level, maspin knockdown led to a significant reduction in GSTp expression, whereas dual knockdown of maspin and HDAC1 barely increased the level of GSTp expression. Thus, HDAC1 may play an essential role in cellular response to maspin-mediated GSTp desilencing. Maspin has been shown to increase tumor cell sensitivity to drug-induced apoptosis. Interestingly, GSTp reexpression in the absence of maspin expression perturbation blocked the phosphorylation of histone 2A.X, the induction of hypoxia-induced factor 1a (HIF-1a), and cell death of LNCaP cells under oxidative stress. Because DNA hypermethylation-based silencing may couple with and depend on histone deacetylation, our study suggests that endogenous HDAC inhibition by maspin may prevent pathologic gene silencing in prostate tumor progression.

163. PMID 22116453
Both taking folic acid-containing vitamins around conception and consuming food fortified with folic acid have been reported to reduce omphalocele rates. Genetic factors are etiologically important in omphalocele as well; our pilot study showed a relationship with the folate metabolic enzyme gene methylenetetrahydrofolate reductase (MTHFR). We studied 169 non-aneuploid omphalocele cases and 761 unaffected, matched controls from all New York State births occurring between 1998 and 2005 to look for associations with single nucleotide polymorphisms (SNPs) known to be important in folate, vitamin B12, or choline metabolism. In the total study population, variants in the transcobalamin receptor gene (TCblR), rs2232775 (p.Q8R), and the MTHFR gene, rs1801131 (c.1298A>C), were significantly associated with omphalocele. In African-Americans, significant associations were found with SNPs in genes for the vitamin B12 transporter (TCN2) and the vitamin B12 receptor (TCblR). A SNP in the homocysteine-related gene, betaine-homocysteine S-methyltransferase (BHMT), rs3733890 (p.R239Q), was significantly associated with omphalocele in both African-Americans and Asians. Only the TCblR association in the total population remained statistically significant if Bonferroni correction was applied. The finding that transcobalamin receptor (TCblR) and transporter (TCN2) SNPs and a BHMT SNP were associated with omphalocele suggests that disruption of methylation reactions, in which folate, vitamin B12, and homocysteine play critical parts, may be a risk factor for omphalocele. Our data, if confirmed, suggest that supplements containing both folic acid and vitamin B12 may be beneficial in preventing omphaloceles.

164. PMID 18635238
Breast Cancer Metastasis Suppressor 1 (BRMS1) suppresses metastasis of human breast cancer, ovarian cancer and melanoma in athymic mice. Studies have also shown that BRMS1 is significantly downregulated in some breast tumors, especially in metastatic disease. However, the mechanisms which regulate BRMS1 expression are currently unknown. Upon examination of the BRMS1 promoter region by methylation specific PCR (MSP) analysis, we discovered a CpG island (-3477 to -2214), which was found to be hypermethylated across breast cancer cell lines. A panel of 20 patient samples analyzed showed that 45% of the primary tumors and 60% of the matched lymph node metastases, displayed hypermethylation of BRMS1 promoter. Furthermore, we found a direct correlation between the methylation status of the BRMS1 promoter in the DNA isolated from tissues, with the loss of BRMS1 expression assessed by immunohistochemistry. There are several studies investigating the mechanism by which BRMS1 suppresses metastasis; however thus far there is no study that reports the cause(s) of loss of BRMS1 expression in aggressive breast cancer. Here we report for the first time that BRMS1 is a novel target of epigenetic silencing; and aberrant methylation in the BRMS1 promoter may serve as a cause of loss of its expression.

165. PMID 21896932
Breast cancer (BC) is the most common cancer worldwide. The Kingdom of Saudi Arabia is no exception, with ever increasing incidence rates. An interesting feature of this disease is the relatively young age of the affected women. The average age in the present cohort of 100 sporadic cases of invasive ductal carcinomas was 45 years, with a median of 46 years (range between 19-81 years). In an effort to understand the molecular signature of BC in the Saudi population, we undertook this study to profile the methylation events in a series of key genes including Ras association (RalGDS/AF-6) domain family member 1 isoform a (RASSF1A), hypermethylated in cancer 1 (HIC1), cyclin-dependent kinase inhibitor 2A (CDKN2A), retinoic acid receptor beta (RARB2), estrogen receptor 1 (ESR1), progesterone receptor (PGR), paired-like homeodomain 2 (PITX2), secreted frizzled-related protein 1 (SFRP1), myogenic differentiation 1 (MYOD1), and slit homolog 2 (SLIT2), using MethyLight analysis in archival tumour samples. Interestingly, the overall methylation levels were low in this cohort, with only 84% of the cases displaying methylation in one or more of the analysed genes. The frequency of RASSF1A methylation was the highest (65%), while there was almost complete absence of methylation of the ESR1 and the CDH1 genes (1% and 3%, respectively). Several statistically significant correlations were identified between specific methylation events and clinical parameters which gained more significance when analysis was limited to the estrogen receptor positive samples. Although there was no significant correlations between any methylation event and disease-specific survival, methylation of MYOD1 or RASSF1A was associated with lower disease-free survival and increased chance of disease recurrence. Furthermore, multivariate (Cox) regression analysis identified RASSF1A as an independent predictor of poor prognosis in terms of disease-free survival in this cohort. Our findings provide further evidence on the usefulness of RASSF1A methylation status as an informative prognostic biomarker in BC in a Saudi population.

166. PMID 18701415
Breast cancer is a heterogeneous disease, and patients are categorized into subtypes according to gene expression. We studied the associations among molecular, immunohistochemical, and clinicopathologic features and their distribution according to the subtypes luminal, HER2, basal, and normal-like in 60 patients with invasive ductal breast carcinoma without distant metastasis at the time of diagnosis (M0). We evaluated the hypermethylation of the CDH-1, RASSF1A, SIAH-1 and TSLC-1 genes by methylation-specific polymerase chain reaction and the expression of p53, bcl-2, cyclin D1, E-cadherin, and beta-catenin proteins in tissue microarrays by immunohistochemical analysis. Expression of bcl-2 was associated with the luminal subtype (P=.003), and CDH-1 hypermethylation was present preferentially in HER2 tumors (P=.038). The basal subtype was characterized by the expression of beta-catenin (P=.003). The hypermethylation of CDH-1 and the expression of bcl-2, cyclin D1, and beta-catenin proteins differ among breast cancer subtypes.

167. PMID 20353086
Breast cancer is bound up with the environment. As a consequence of DNA damage induced by environmental carcinogens, a number of sophisticated sensing and transduction systems are initiated and the signal is conveyed simultaneously to multiple effectors. This process ultimately results in cancer. The protein kinase Ataxia-telangiectasia mutated (ATM) that encoded by ATM gene is the master regulator of DNA damage response. In this consecutive reaction, the protein kinase ATM responds to the DNA damage by phosphorylating a variety of downstream substrates, which plays an important role in the inhibition of the development of breast cancer. After ATM gene mutate, DNA damaged could not be accurately repaired and finally accelerates breast cancer transformation and proliferation. With the further research of ATM gene structure, function and breast cancer susceptibility, the extensive attention is paid to the relationship between ATM gene and breast cancer susceptibility. We reviewed the research advances in breast cancer susceptibility in several aspects of ATM gene, including mutation, polymorphism and methylation.

168. PMID 17998817
Breast cancer is fast emerging as the leading cancer amongst females, especially in young females in metropolitan cities in India. The epigenetic alterations involved in the onset and progression of breast cancer may serve as biomarkers for early detection and prognosis of the disease. Furthermore, using body fluids such as serum offers a noninvasive method to procure multiple samples for such analyses. In this study, we examined methylation status of two normally unmethylated but biologically significant cancer genes, RAS association domain family protein 1A (RASSF1A) and retionic acid receptor beta (RARbeta) by methylation specific PCR (MSP) in invasive ductal carcinomas of the breast and paired serum DNA. RASSF1A was found to be methylated in 17 of 20 (85%) breast tumors; while sera from 15 of 20 (75%) of the patients showed concordant methylated RASSF1A, with a sensitivity of 88%. RARbeta was methylated in 2/20 (10%) breast tumors. A gene unmethylated in the tumor DNA was always found to be unmethylated in the matched serum DNA for both RASSF1A and RARbeta genes; hence specificity was 100%. Immunohistochemical analysis of RARbeta protein in 15 breast carcinoma patients harboring unmethylated RAR bin tumors and serum DNA showed the expression of RARbeta protein in tumors and paired normal breast tissues, confirming the MSP findings, suggesting that RARbeta promoter is functional in these cases. This study underscores the potential utility of DNA methylation based screening of serum, a readily accessible body fluid, as a surrogate marker for early detection of breast cancer.

169. PMID 22297548
Breast cancer is the most common cancer in women worldwide, representing 28.2% of all female malignancies. In addition to genetic changes, epigenetic events, as aberrant DNA methylation and histone modification, are responsible for cancer development. Many tumour suppressor genes are inactivated by DNA hypermethylation, which could be utilized for identification of new epigenetic biomarkers. To investigate the relation between DNA methylation level and breast cancer progression, we analysed DNA methylation in RASSF1A and CDH1 promoters using quantitative multiplex methylation-specific PCR in paraffin-embedded tumour tissues and blood samples from 92 breast cancer patients and 50 controls, respectively. The associations between RASSF1A and CDH1 methylation levels and clinico-pathological parameters were tested by Kruskal-Wallis and van der Waerden ANOVA tests. Out of 92 breast cancer patients, 76 (82.6%) manifested various levels of RASSF1A (range from 1.20 to 92.63%) and 20 (21.7%) of CDH1 (range from 1.20 to 79.62%) methylation. However, no methylation was found in 50 controls. Increasing trends in RASSF1A methylation were observed in tumour size, lymph node status and TNM stage, but only CDH1 methylation levels showed statistically significant differences between the patient subgroups in lymph node status and IHC subtype. Overall, stable relatively high RASSF1A methylation could be utilised as universal tumour marker and the less frequent but highly methylated CDH1 promoter can serve for identification of potentially metastasising tumours.

170. PMID 22406531
Breast cancers are highly heterogeneous but can be grouped into subtypes based on several criteria, including level of expression of certain markers. Claudin-low breast cancer (CLBC) is associated with early metastasis and resistance to chemotherapy, while gene profiling indicates it is characterized by the expression of markers of epithelial-mesenchymal transition (EMT) - a phenotypic conversion linked with metastasis. Although the epigenetic program controlling the phenotypic and cellular plasticity of EMT remains unclear, one contributor may be methylation of the E-cadherin promoter, resulting in decreased E-cadherin expression, a hallmark of EMT. Indeed, reduced E-cadherin often occurs in CLBC and may contribute to the early metastasis and poor patient survival associated with this disease. Here, we have determined that methylation of histone H3 on lysine 9 (H3K9me2) is critical for promoter DNA methylation of E-cadherin in three TGF-ß-induced EMT model cell lines, as well as in CLBC cell lines. Further, Snail interacted with G9a, a major euchromatin methyltransferase responsible for H3K9me2, and recruited G9a and DNA methyltransferases to the E-cadherin promoter for DNA methylation. Knockdown of G9a restored E-cadherin expression by suppressing H3K9me2 and blocking DNA methylation. This resulted in inhibition of cell migration and invasion in vitro and suppression of tumor growth and lung colonization in in vivo models of CLBC metastasis. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT but also paves a way for the development of new treatment strategies for CLBC.

171. PMID 22019212
Brother of the regulator of the imprinted site (BORIS) or CTCFL is an 11 zinc finger (ZF) protein, which is considered to be a new oncogene. It is a paralogue of CCCTC-binding factor (CTCF), generated by a duplication event. BORIS is highly expressed in primary spermatocytes, although it is silenced at later stages of spermatogenesis. BORIS has either not been found in normal human tissues or cells or has been detected at very low levels. The expression of the BORIS gene is predominantly controlled by DNA-methylation, while its activation requires the demethylation of its promoter. Re-expression of BORIS in cancers is due to the hypomethylation of its promoter. High expression of BORIS protein and RNA correlates with the tumour size and grade in cancer patients. High percentages of BORIS transcripts were detected in breast, endometrial, prostatic and colon cancer patients. Lower percentages of BORIS were found in patients with melanoma and cancers of the head and neck. The expression of BORIS varied from low to high in lung, colon and ovarian cancer, melanoma and leukaemic cell lines. Lower expressions of BORIS were found in head and neck, breast, kidney, bladder, testicular and prostate carcinoma cell lines. An inhibitor of DNA methylation, 5-aza-2'deoxy-cytidine (5-azadC), and histone deacetylase inhibitors induced or enhanced the expression of BORIS in various carcinoma cell lines. The silencing of BORIS induced apoptosis in tumorous cell lines. BORIS antitumor vaccines have been tested in mice with several cancers, based on the deletion of the DNA-binding ZF-region of the BORIS.

172. PMID 21755341
CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 (CITED4) inhibits HIF-1a transactivation by binding to CBP/p300. We hypothesised that either somatic mutation or hypermethylation of the CITED4 gene underlies CITED4 down-regulation and thus enhanced HIF-1a expression in some breast tumours. DNA sequencing was used to screen for somatic mutations. Methylation-sensitive high resolution melting was performed to identify CITED4 methylation. RT-qPCR was carried out to measure the expression of CITED4 and selected HIF downstream targets. HIF-1a and downstream gene expression was assessed with immunohistochemistry. No somatic mutations of CITED4 were identified in 10 tumour cell lines and 100 breast carcinomas. However, CITED4 promoter methylation was identified in 5/168 breast carcinomas (four infiltrating ductal carcinomas and one infiltrating lobular carcinoma) and in 3/10 breast cancer cell lines (MDA-MB-453, MDA-MB-231 and Hs578T). CITED4 mRNA expression in cell lines was inversely correlated with DNA methylation. CITED4 mRNA expression was significantly increased in all three cell lines after 5-aza-2-deoxycytidine (DAC) treatment. Treatment of the MDA-MB-231 cell line with DAC followed by hypoxia (0.1% O²) resulted in down-regulation of expression of the HIF-1a downstream genes VEGFA and SLC2A1 (P = 0.0029). HIF-1a downstream SLC2A1 was decreased (P = 0.021) after CITED4 was re-expressed under hypoxia. Loss of expression of CITED4 in breast cancer may be due to DNA methylation but is unlikely to be due to mutation. Demethylation and histone modification can potentially reactivate CITED4 gene expression in some breast cancers and lead to changes in tumour behaviour. Strategies such as HDAC inhibitors may overcome this effect.

173. PMID 20629990
CD147 is a transmembrane glycoprotein overexpressed in human hepatocellular carcinoma (HCC) which could promote HCC progression and metastasis. Promoter methylation is one of the most important processes in gene regulation. In this study, we aim to investigate CD147 promoter methylation status and the correlation with clinicopathological features and prognosis in HCC. CD147 promoter methylation statuses and expression levels in normal and HCC cell lines and 54 paired HCC and adjacent non-tumour (ANT) tissues were, respectively, examined by bisulphite genomic sequencing, methylation-specific PCR, real-time RT-PCR, Western blot and immunohistochemistry. The correlations of promoter methylation statuses with CD147 expression level and the clinicopathological features were statistically analysed in HCC patients. Significantly higher expression of CD147 and significantly lower promoter methylation level were observed in HCC cell lines compared to normal cell lines and tissues control. In vivo and in vitro analysis indicated that demethylation with 5-Aza-2'-deoxycytidine led to increased CD147 expression through enhancing Sp1 binding affinity, and methylation with methyltransferase reduced CD147 transcriptional activity through interfering Sp1 binding. CD147 promoter methylation level in HCC tissues (22.22%) was lower than that in ANT tissues (46.30%; P < 0.05). Within HCC tissues, a significant inverse correlation was observed between CD147 expression and methylation level (r=-0.615). Moreover, HCC patients with unmethylated CD147 promoter had a significantly higher recurrence rate (88.1%versus 58.3%; P < 0.05) and death rate (83.3%versus 50.0%; P < 0.05) than patients with methylated CD147 promoter. In conclusions, promoter hypomethylation up-regulates CD147 expression primarily through increasing Sp1 binding and associates with poor prognosis in HCC patients.

174. PMID 21550117
CD70 (TNFSF7), as a methylation susceptive immune gene, was hypomethylated in some autoimmune diseases. To investigate the status of CD70 methylation and the expressions of genes that regulated methylation in immune thrombocytopenia (ITP) patients, the expressions of CD70 mRNA and protein in CD4(+) T cells from ITP and controls were measured respectively by real-time PCR and flow cytometry. Methylation specific high resolution melting (MS-HRM) technology was applied to detect CD70 promoter methylation indices. Transcription levels of DNA methyltransferases (DNMTs), methylated CpG binding protein 2 (MBD2) were measured. The results showed that CD70, DNMTs and MBD2 was over expressed and methylation indices of CD70 promoter in CD4(+) T cells from ITP patients were lower than that from healthy controls. The transcription levels of CD70 showed significantly inverse correlation with methylation indices in ITP patients but significantly positive correlation with that of DNMTs. We concluded that DNMTs functioned as demethylases as MBD2, while increased DNMTs and MBD2 may cause demethylation and over expression of CD70 in CD4(+) T cells, potentially contributing to the pathogenesis of ITP.

175. PMID 18755853
CDC73 (HRPT2) germline mutations are responsible for more than half of cases of hyperparathyroidism-jaw tumor syndrome (HPT-JT) and for a subset of familial isolated HPT (FIHP). We performed a clinical, genetic, and histopathologic study in three unrelated Italian kindreds with HPT-JT and FIHP. We identified three germline inactivating mutations of the CDC73 gene in the probands and affected patients of the three kindreds, but also in some asymptomatic subjects. HPT-JT and FIHP patients had similar laboratory, clinical, and demographic features and shared primary HPT and other neoplasms, the most common of which was uterine polyposis. Genetic analysis of tumor samples demonstrated a second somatic CDC73 mutation only in a parathyroid adenoma and no cases with the loss of the wild-type allele or methylation of the CDC73 promoter, even though immunohistochemical analysis demonstrated the loss of nuclear parafibromin expression in all tumors, including a uterine polyp. In conclusion, our results indicate that FIHP and HPT-JT associated with CDC73 mutations do not have distinct clinical, genetic, and histopathologic features, but may represent variants of the same genetic disease. This study also confirms that uterine involvement represents a clinical manifestation of the syndrome.

176. PMID 21373750
CDH1, a cell adhesion molecule, which plays a key role in maintaining the epithelial phenotype, is regarded as an invasion-suppressor gene in light of accumulating evidence from in vitro experiments and clinical observations. In an attempt to clarify the mechanism responsible for inactivation of this gene in carcinomas, we investigated the methylation status of the CDH1 gene 5'-CpG islands and its regulatory mechanism in the progression of esophageal squamous cell carcinoma. Real-time methylation-specific polymerase chain reaction (qMSP) and treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR) were conducted to analyze the methylation status at the CDH1 promoter region in the human esophageal carcinoma cell lines, EC1 and EC9706. A total of 235 invasive esophageal squamous cell carcinomas (ESCC) at stages I-IV and their corresponding normal tissue samples, were included in an immunohistochemistry study and methylation analysis of CDH1. The results demonstrate that in EC1 and EC9706 cells, the CDH1 promoter is methylated and treatment with 5-Aza-CdR restored CDH1 expression. Enhanced CDH1 expression decreased cell migration, invasion ability and increased adhesion ability. Decreased CDH1 expression was detected in 59.6% of ESCC tissues, compared with their adjacent non-neoplastic epithelia, which had a close correlation with the primary tumor status, lymph node status, distant metatasis and clinicopathologic stage. Hypermethylation at the CDH1 promoter was detected in 97.9% of 140 cases of ESCC with low CDH1 expression. The methylation of CDH1 promoters (P=0.929) was closely correlated with the lack of expression of their corresponding proteins. The Cox regression model for survival analysis showed that increases in CDH1 methylation had a greater impact on the prognosis than tumor clinical stage. These findings suggest that CDH1 gene silencing by promoter hypermethylation and the resultant reduction of CDH1 expression may play an important role in the progression of ESCC. CDH1 methylation was a significant predictor of survival in ESCC patients after surgery.

177. PMID 19340297
CDKN1C (encoding tumor suppressor p57(KIP2)) is a cyclin-dependent kinase (CDK) inhibitor whose family members are often transcriptionally downregulated in human cancer via promoter DNA methylation. In this study, we show that CDKN1C is repressed in breast cancer cells mainly through histone modifications. In particular, we show that CDKN1C is targeted by histone methyltransferase EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3), and can be strongly activated by inhibition of EZH2 in synergy with histone deacetylase inhibitor. Consistent with the overexpression of EZH2 in a variety of human cancers including breast cancer, CDKN1C in these cancers is downregulated, and breast tumors expressing low levels of CDKN1C are associated with a poor prognosis. We further show that assessing both EZH2 and CDKN1C expression levels as a measurement of EZH2 pathway activity provides a more predictive power of disease outcome than that achieved with EZH2 or CDKN1C alone. Taken together, our study reveals a novel epigenetic mechanism governing CDKN1C repression in breast cancer. Importantly, as a newly identified EZH2 target with prognostic value, it has implications in patient stratification for cancer therapeutic targeting EZH2-mediated gene repression.

178. PMID 21168207
CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARa and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias.

179. PMID 18182455
CONTEXT: Pseudohypoparathyroidism (PHP) type Ia is a rare maternally transmitted disease due to maternal loss-of-function mutations of GNAS, the gene encoding Galphas, the alpha-stimulatory subunit of the G protein. Affected individuals display hormonal resistance (mainly PTH and TSH resistance) and Albright hereditary osteodystrophy. PHP type Ib (PHP-Ib), usually defined by isolated renal resistance to PTH and sometimes mild TSH resistance, is due to a maternal loss of GNAS exon A/B methylation, leading to decreased Galphas expression in specific tissues. OBJECTIVE AND RESULTS: We report a girl with obvious Albright osteodystrophy features, PTH resistance, normal Galphas bioactivity in red blood cells, yet no loss-of-function mutation in the GNAS coding sequence (exons 1-13). The methylation analysis of the four GNAS differentially methylated regions, i.e. NESP, AS, XL, and A/B, revealed broad methylation changes at all differentially methylated regions, including GNAS exon A/B, leading to a paternal epigenotype on both alleles. CONCLUSIONS: This observation suggests that: 1) the decreased expression of Galphas due to GNAS epimutations is not restricted to the renal tubule but may affect nonimprinted tissues like bone; 2) PHP-Ib is a heterogeneous disorder that should lead to studying GNAS epigenotype in patients with PHP and no mutation in GNAS exons 1-13, regardless of their physical features.

180. PMID 20934379
COX-2 expression is altered in gastrointestinal diseases. Helicobacter pylori (Hp) infection may have a critical role in COX-2 disregulation. We undertook this study to investigate possible chromatin and DNA methylation changes occurring early during COX-2 gene activation as a direct consequence of Hp-gastric cells interaction. We show that Hp infection is followed by different expression, chromatin and DNA methylation changes including: (i) biphasic activation of COX-2 gene; (ii) rapid remodulation of HDACs expression and activity, increased acetylation and release of HDAC from COX-2 promoter; (iii) transient gradual increase of H3 acetylation and H3K4 dimethylation and decrease of H3K9 dimethylation; (iv) late and long-lasting increase of H3K27 trimethylation; (v) rapid cyclical DNA methylation/demethylation events at 8 specific CpG sites (-176, -136, +25, +36, +57, +82, +198, +231) surrounding the COX-2 gene transcriptional start site. Our data indicate that specific chromatin and DNA methylation changes occur at COX-2 gene in the first phases of Hp exposure in cultured gastric cells as a primary response to host-parasite interaction.

181. PMID 22213191
CYP1A1 (cytochrome P4501A1) catalyze the conversion of polycyclic aromatic hydrocarbons into reactive metabolites, which may induce DNA damage. We hypothesized that DNA methylation of the CYP1A1 enhancer could be involved in inter-individual differences in mRNA levels of CYP1A1 or affect the smoking-induced DNA damage in human lung. Using DNA bisulfite conversion and pyrosequencing, we show that DNA methylation of the CYP1A1 enhancer is affected by smoking. In adjacent histologically normal lung from lung cancer patients (n = 120), low levels of DNA methylation of the CYP1A1 enhancer were related to high levels of smoking-induced hydrophobic DNA adduct (p <; 0.03), and to the presence of TP53 or K-ras mutations in the corresponding lung tumors (p < 0.03). We found an inverse correlation between DNA methylation of the CYP1A1 enhancer and mRNA levels in vivo (Spearman r = -0.54; p < 0.0001). Thus, in lung tumor tissues, the CYP1A1 enhancer hypermethylation was associated with lower mRNA levels compared to adjacent histologically normal tissue (p <; 0.0001). In vitro, using a panel of cultured human lung cells, we found hypermethylation of the CYP1A1 enhancer in cancer cell lines and an inverse correlation between DNA methylation and mRNA levels (Spearman r = -0.53; p = 0.003). Altogether, our results indicated that low levels of DNA methylation of the CYP1A1 enhancer in histologically normal human lung were associated with high CYP1A1 mRNA levels and with smoking-induced genetic alterations; thus, it may play a role in the initiation of lung carcinogenesis.

182. PMID 21317879
Ca2+ is a chemopreventive agent for colon cancer. Ion transport systems are often altered in human cancer. The aim of this study was to clarify the alterations of calcium-sensing receptor (CASR), a member of the G protein-coupled receptor family, in colorectal carcinogenesis. We analyzed the expression of CASR in colorectal cancer cell lines and in cancer and adenoma tissues by RT-PCR and immunostaining. In addition, we analyzed methylation of the CASR promoter by using bisulfite sequence analysis and methylation-specific PCR. CASR mRNA and protein expression was significantly downregulated in most of the cancer cell lines. CpG islands were densely methylated in cancer cell lines with reduced CASR mRNA expression. Treatment with a demethylating agent, 5-aza-2'-deoxycytidine, and/or a histone deacetylase inhibitor, trichostatin A, restored CASR expression in the cancer cell lines. Disruption of CASR expression in CASR-unmethylated HCT-8 cells blocked the enhancing effect of Ca2+ on the cytotoxic response to 5-fluorouracil. CASR expression was observed in normal colonic epithelial cells and was retained in most adenoma tissues. CASR mRNA and protein expression was significantly downregulated in cancer tissues. There was an inverse relationship between CASR expression and degree of differentiation. Immunohistochemical CASR staining was reduced more predominantly in less-differentiated cancer tissues and/or in cancer cells at the invasive front, where nuclear/cytoplasmic ß-catenin was often localized. CASR methylation was detected in 69% of colorectal cancer tissues and 90% of lymph node metastatic tissues and was significantly correlated with reduced CASR expression. CASR methylation was also detected in 32% of advanced adenoma tissues but was detected in only 9% of adenoma tissues and was not detected in hyperplastic polyp tissues. CASR methylation seems to occur at an early stage and progress in colorectal carcinogenesis. The results suggest that epigenetic inactivation of CASR has an important role in colorectal carcinogenesis.

183. PMID 22112500
Cadmium (Cd) and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood yet. Aberrant methylation was investigated in order to obtain insight into the DNA repair-related epigenetic mechanisms underlying CdCl(2)-induced malignant transformation of human bronchial epithelial cells (16HBE). Gene expression and DNA methylation were assessed in untreated control cells; 5th, 15th, and 35th passage of CdCl2-treated cells and tumorigenic cells (TCs) from nude mice by using high-performance liquid chromatography, real-time PCR, Western blot analysis, and methylation-specific PCR assay. During Cd-induced malignant transformation, global DNA methylation progressively increased and was associated with the overexpression of the DNA methyltransferase genes DNMT1 and DNMT3a but not DNMT3b. Expression of both the messenger RNA and proteins of the DNA repair genes (hMSH2, ERCC1, XRCC1, and hOGG1) progressively reduced and DNA damage increased with Cd-induced transformation. The promoter regions of hMSH2, ERCC1, XRCC1, and hOGG1 were heavily methylated in the 35th passage transformed cells and the TCs. The DNA demethylating agent 5-aza-2'-deoxycytidine could reverse the Cd-induced global DNA hypermethylation, DNMT hyperactivity, and the silencing of hMSH2, ERCC1, XRCC1, and hOGG1 in a time-dependent manner. The results indicate that DNMT1 and DNMT3a overexpression can result in global DNA hypermethylation and silencing of the hMSH2, ERCC1, XRCC1, and hOGG1 genes. They may partly explain the epigenetic mechanisms underlying the carcinogenesis due to Cd.

184. PMID 20431345
Calcitriol (1a, 25(OH)(2)-Vitamin D3) binds to the vitamin D receptor (VDR) and regulates differentiation of the normal mammary gland, and may therefore be useful in breast cancer treatment or prevention. Many breast cancer cells are, however, resistant to Calcitriol. In this study, we investigated the resistance mechanism and the role of epigenetic silencing of VDR by promoter hypermethylation. Bisulfite sequencing of the VDR promoter region revealed methylated CpG islands at -700 base pairs (bp) upstream and near the transcription start site. VDR CpG islands were demethylated by 5'deoxy-azacytidine treatment, and this was accompanied by a parallel increase in VDR mRNA levels in breast cancer cell lines. Quantitative methylation-specific PCR analyses confirmed hypermethylation of these CpG islands in primary tumors, and its absence in normal breast tissue. VDR transcripts detected in breast cancers were predominantly 5'-truncated, while normal breast tissue expressed full-length transcripts. Consistent with this observation, genes containing the VDR-responsive element (VDRE), such as cytochrome p450 hydroxylases, p21 or C/EBP were underexpressed in breast cancers compared to normal breast samples. Expression of the active longer transcripts of VDR was restored with 5'deoxy-Azacytidine (AZA) treatment, with a concurrent increase in expression of VDRE-containing genes. Thus, promoter methylation-mediated silencing of expression of the functional variants of VDR may contribute to reduced expression of downstream effectors of the VDR pathway and subsequent Calcitriol insensitivity in breast cancer. These data suggest that pharmacological reversal of VDR methylation may re-establish breast cancer cell susceptibility to differentiation therapy using Calcitriol.

185. PMID 20587525
Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene, which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. Quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of vitamin D receptor to the CYP24A1 promoter. Reverse transcriptase-PCR analysis of paired human prostate samples revealed that CYP24A1 expression is downregulated in prostate malignant lesions compared with adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared with matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications.

186. PMID 21273772
Cancer cells exhibit two opposing methylation abnormalities: genome-wide hypomethylation and gene promoter hypermethylation. Downregulation of E-cadherin (CDH1) plays a key role in the development of diffuse-type gastric cancer, and DNA methylation is a major cause of the gene's silencing. Hereditary diffuse gastric cancer is caused by germline mutation of CDH1 gene, and DNA methylation frequently serves as the second hit completely inactivating the gene. In sporadic diffuse-type gastric cancer, methylation of CDH1 is more prevalent than mutation of the gene. Epstein-Barr virus (EBV)-associated gastric carcinoma (EBV-associated GC) is characterized by concurrent methylation of multiple genes, and diffuse-type gastric cancer is frequently seen among EBV-associated GCs. Patients with pangastritis or enlarged-fold gastritis, which are both caused by Helicobacter pylori infection, reportedly have an increased risk for diffuse-type gastric cancer. Notably, the gastric mucosa of enlarged-fold gastritis patients exhibits CDH1 hypermethylation and genome-wide hypomethylation. These data suggest that aberrant DNA methylation is an essential promoter of carcinogenesis in individuals at high risk for diffuse-type gastric cancer.

187. PMID 21045259
Cancer development is associated with genetic instability. Identification of specific loci altered during carcinogenesis in a particular tissue gives scope for early detection and predicting the progressive nature of the tissue pathology. Instability at microsatellite loci is widely attributed to mismatch repair errors due to epigenetic alterations. Using three dinucleotide markers, D3S1313, D9S171, D17S250 and two mononucleotide markers BAT25, BATRII, we evaluated MSI in 97 cases enrolled for endoscopy of upper GI tract with symptoms of dyspepsia, reflux or dysphagia. We aimed at evaluating markers that reflect instability in esophageal malignancies, examine the prevalence of MSI in cancers and other pathologies of the esophagus, and determine the methylation status of hMLH1 gene in relation to MSI. 42% (21/50) cancers and 15.4%(2/13) precancers exhibited MSI where 85.7% cancers and 50% precancers with MSI, showed a hypermethylated hMLH1 promoter. Increased number of cases with repair gene methylation were seen with increasing severity of the esophageal pathology suggesting epigenetic progression parallels histologic changes. BAT25 and D3S1313 markers exhibited instability frequently and cases with MSI using these markers showed an abnormal hMLH1 promoter. Thus these markers were useful in identifying the mismatch repair phenotype. These two markers may be useful to screen cases for early cancer related changes, after validation on a larger sample.

188. PMID 19072648
Cancer is fundamentally a genetic and epigenetic disease that requires the accumulation of genomic alterations that inactivate tumor suppressors and activate proto-oncogenes. In addition to genetic mutation or allelic loss, epigenetic gene silencing associated with DNA methylation is now recognized as an alternative mechanism by which tumor suppressor genes are inactivated. In gastrointestinal cancers, for example, DNA methylation frequently alters the activity in a number of important signaling pathways by silencing expression of genes encoding Wnt antagonists, negative Ras effectors and p53 targets. Indeed, the list of genes aberrantly methylated in cancer is growing, and methylation of a p53 target micoRNA gene has recently been demonstrated. Sites of DNA methylation could be promising markers and targets for risk assessment, early detection and treatment of cancer.

189. PMID 22359284
Cancer patients' outcome and survival depends on the early diagnosis of malignant lesions. Several investigation methods used for the prevention and early detection strategies have specific limitations. More recently, epigenetic changes have been considered one of the most promising tools for the early diagnosis of cancer. Some of these epigenetic alterations including promoter hypermethylation of genes like P16INK4a, BRCA1, BRCA2, ERa and RARß2, APC, and RASSF1A have been associated with early stages of mammary gland tumorigenesis and have been suggested to be included in the models that evaluate individual breast cancer risk. In lung cancer, P16INK4a and MGMT gene hypermethylation was observed in sputum years before clinical manifestation of the squamous cell carcinoma among smokers. Loss of GSTP1 function by DNA hypermethylation together with changes in the methylation levels of repetitive elements like LINE-1 and Sat2 was reported in prostatic preneoplastic lesions. Also, DNA hypermethylation for hMLH1 and MGMT DNA repair genes was reported in precursor lesions to colorectal cancer. These epigenetic alterations may be influenced by factors such as xenoestrogens, folate, and multivitamins. Detection of these changes may help determining cancer susceptibility and early diagnosis.

190. PMID 20587329
Cancer/testis (CT) antigens exhibit highly tissue-restricted expression and are considered promising targets for cancer vaccines. Here we identified a novel CT gene ZNF645 which restrictively expresses in normal human testes and lung cancer patients (68.3%). To investigate the promoter methylation status of ZNF645, we carried out bisulfite genomic sequencing and found that the CpG island in its promoter was heavily methylated in normal lung tissues without the expression of ZNF645, whereas there was high demethylation in normal human testes and lung carcinoma tissues with its expression. Also ZNF645 could be remarkably activated in A549 and HEK293T cells treated by DNA demethylation agent 5'-aza-2'-deoxycytidine. And the dual luciferase assay revealed that the promoter activity of the ZNF645 was inhibited by methylation of the CpG island region. Therefore, we proposed that ZNF645 is a CT gene and activated in human testis and lung cancers by demethylation of its promoter region.

191. PMID 21281797
Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific, intramitochondrial, rate-limiting enzyme in the urea cycle. A previous study showed that CPS1 is the antigen for hepatocyte paraffin 1 antibody, a commonly used antibody in surgical pathology practice; and CPS1 expression appears to be down-regulated in liver cancer tissue and cell lines. The aim of this study is to understand how the CPS1 gene is regulated in liver carcinogenesis. In this report, we show that human hepatocellular carcinoma (HCC) cells do not express CPS1, whereas cultured human primary hepatocytes express abundant levels. In addition, CPS1 was silenced or down-regulated in liver tumor tissues compared with the matched noncancerous tissues. The expression of CPS1 in HCC cells was restored with a demethylation agent, 5-azacytidine. We show that two CpG dinucleotides, located near the transcription start site, and a CpG-rich region in the first intron were hypermethylated in HCC cells. The hypermethylation of the two CpG dinucleotides was also detected in HCC tumor tissues compared with noncancerous tissues. Further molecular analysis with mutagenesis indicated that the two CpG dinucleotides play a role in promoter activity of the CPS1 gene. In conclusion, our study demonstrates that DNA methylation is a key mechanism of silencing CPS1 expression in human HCC cells, and CPS1 gene hypermethylation of the two CpG dinucleotides is a potential biomarker for HCC.

192. PMID 22595458
Casp8AP2 contains a FLASH functional domain and is critical for the formation of death complex and the relay of death signal into the cells. Genetic defects in Casp8AP2 are associated with several diseases. A CpG island within the Casp8AP2 promoter is differentially regulated during somatic stem cell differentiation, and aberrant DNA methylation within the Casp8AP2 promoter has been reported in cancers. We hypothesized that abnormal DNA methylation of Casp8AP2 promoter might contribute to prolonged cellular survival or drug resistance in cancer. The epigenetic state within the Casp8AP2 promoter was then determined in different cancer cell lines and patient samples by methylation-specific PCR. Targeted Casp8AP2 methylation within normal and tumor cells was performed to see whether methylation promoted drug resistance. We found differential Casp8AP2 methylation among the normal and tumoral samples. Global demethylation in a platinum drug-resistant human gastric cancer cell line reversed Casp8AP2 methylation and diminished drug resistance. Targeted methylation of the Casp8AP2 promoter in somatic stem cells and cancer cells increased their resistance to drugs including platinum drugs. These data demonstrate that methylation within the Casp8AP2 promoter correlates with the development of drug resistance and might serve as a biomarker and treatment target for drug resistance in cancer cells.

193. PMID 20403046
Caspase 8 and survivin are known as key molecules of apoptosis in hepatocellular carcinoma (HCC). The purpose of the present study was to investigate the relationship between promoter methylation and expression and apoptotic function of caspase 8 and survivin in HCC. Promoter methylation of the caspase 8 and survivin gene was analyzed in 73 primary HCC using methylation-specific polymerase chain reaction. The relationship between immunohistochemical expression of gene products and proliferative/apoptotic indices, and clinicopathological parameters was also investigated. Twenty-five (34%) and 24 (33%) patients had promoter methylation of caspase 8 and survivin gene. Immunohistochemical staining of caspase 8 and survivin was observed in 35 (48%) and 32 (44%). The methylation of caspase 8 and survivin demonstrated a negative correlation with immunohistochemical expression of gene products (P= 0.049 and P= 0.001). Methylation of caspase 8 and positive expression of its gene product was significantly correlated with high apoptotic indices (P= 0.032 and P= 0.026). Nuclear survivin expression was significantly correlated with high proliferative index (P= 0.001). On survival analysis, positive nuclear survivin expression was associated with a poor prognosis in HCC (P= 0.043). In conclusion, epigenetic alteration by promoter methylation of caspase 8 and survivin may constitute an important regulatory mechanism for expression of those genes in HCC.

194. PMID 20416298
Catalase, which decomposes reactive oxygen species (ROS), is reduced in hepatocellular carcinoma (HCC); however, the reasons are poorly defined. In this study, it is demonstrated that prolonged exposure to ROS induced methylation of CpG island II on the catalase promoter and downregulated catalase expression at the transcriptional level in HCC cell lines. In addition, hypermethylation of CpG island II was also observed in tumor tissues, together with a decrease in catalase mRNA and protein expression levels when compared to non-tumor tissues. From these data, we suggest that ROS may downregulate catalase through the methylation of promoter during the development of HCC.

195. PMID 21913217
Caveolae are abundant membrane domain on the cell surface of many mammalian cell types and are implicated in a wide range of physiological processes. The caveolae structural protein caveolin-1 is often mutated or deregulated in cancer, and cavin family protein serum deprivation response factor-related gene product that binds to C-kinase (SRBC) has been found to be epigenetically inactivated in lung, breast, and gastric cancer. Both caveolin-1 and SRBC have been proposed to function as tumor suppressors. Polymerase 1 and transcript release factor (PTRF) is the essential component for caveolae formation. The regulation of PTRF expression in cancer has not been characterized. We report here that the cavin family protein PTRF, SRBC and serum deprivation response protein were down regulated in breast cancer cell lines and breast tumor tissue. We further show that down-regulation of PTRF in breast cancer cells was associated with the promoter methylation. As caveolin-1 and cavin family proteins are required for caveolae formation and function, the reported tumor suppression function of caveolin-1 and SRBC may be due to the deregulation of caveolae and its down-stream signaling. Thus, the caveolae is a potential therapeutic target and the expression of cavin family proteins could be a useful prognostic indicator of breast cancer progression.

196. PMID 22085929
Cell migration driven by actomyosin filament assembly is a critical step in tumour invasion and metastasis. Herein, we report identification of myosin binding protein H (MYBPH) as a transcriptional target of TTF-1 (also known as NKX2-1 and TITF1), a master regulator of lung development that also plays a role as a lineage-survival oncogene in lung adenocarcinoma development. MYBPH inhibited assembly competence-conferring phosphorylation of the myosin regulatory light chain (RLC) as well as activating phosphorylation of LIM domain kinase (LIMK), unexpectedly through its direct physical interaction with Rho kinase 1 (ROCK1) rather than with RLC. Consequently, MYBPH inhibited ROCK1 and negatively regulated actomyosin organization, which in turn reduced single cell motility and increased collective cell migration, resulting in decreased cancer invasion and metastasis. Finally, we also show that MYBPH is epigenetically inactivated by promoter DNA methylation in a fraction of TTF-1-positive lung adenocarcinomas, which appears to be in accordance with its deleterious functions in lung adenocarcinoma invasion and metastasis, as well as with the paradoxical association of TTF-1 expression with favourable prognosis in lung adenocarcinoma patients.

197. PMID 20388804
Cellular senescence, the limited ability of cultured normal cells to divide, can result from cellular damage triggered through oncogene activation (premature senescence) or the loss of telomeres following successive rounds of DNA replication (replicative senescence). Although both processes require a functional p53 signaling pathway, relevant downstream p53 targets have been difficult to identify. Discovery of senescence activators is important because induction of tumor cell senescence may represent a therapeutic approach for the treatment of cancer. In microarray studies in which p53 was reactivated in MCF7 cells, we discovered that Yippee-like-3 (YPEL3), a member of a recently discovered family of putative zinc finger motif coding genes consisting of YPEL1-5, is a p53-regulated gene. YPEL3 expression induced by DNA damage leads to p53 recruitment to a cis-acting DNA response element located near the human YPEL3 promoter. Physiologic induction of YPEL3 results in a substantial decrease in cell viability associated with an increase in cellular senescence. Through the use of RNAi and H-ras induction of cellular senescence, we show that YPEL3 activates cellular senescence downstream of p53. Consistent with its growth suppressive activity, YPEL3 gene expression is repressed in ovarian tumor samples. One mechanism of YPEL3 downregulation in ovarian tumor cell lines seems to be hypermethylation of a CpG island upstream of the YPEL3 promoter. We believe these findings point to YPEL3 being a novel tumor suppressor, which upon induction triggers a permanent growth arrest in human tumor and normal cells.

198. PMID 22046413
Change in gene expression associated with pancreatic cancer could be attributed to the variation in histone posttranslational modifications leading to subsequent remodeling of the chromatin template during transcription. However, the interconnected network of molecules involved in regulating such processes remains elusive. hPaf1/PD2, a subunit of the human PAF-complex, involved in the regulation of transcriptional elongation has oncogenic potential. Our study explores the possibility that regulation of histone methylation by hPaf1 can contribute towards alteration in gene expression by nucleosomal rearrangement. Here, we show that knockdown of hPaf1/PD2 leads to decreased di- and tri-methylation at histone H3 lysine 4 residues in pancreatic cancer cells. Interestingly, hPaf1/PD2 colocalizes with MLL1 (Mixed Lineage Leukemia 1), a histone methyltransferase that methylates H3K4 residues. Also, a reduction in hPaf1 level resulted in reduced MLL1 expression and a corresponding decrease in the level of CHD1 (Chromohelicase DNA-binding protein 1), an ATPase dependent chromatin remodeling enzyme that specifically binds to H3K4 di and trimethyl marks. hPaf1/PD2 was also found to interact and colocalize with CHD1 in both cytoplasmic and nuclear extracts of pancreatic cancer cells. Further, reduced level of CHD1 localization in the nucleus in hPaf1/PD2 Knockdown cells could be rescued by ectopic expression of hPaf1/PD2. Micrococcal nuclease digestion showed an altered chromatin structure in hPaf1/PD2-KD cells. Overall, our results suggest that hPaf1/PD2 in association with MLL1 regulates methylation of H3K4 residues, as well as interacts and regulates nuclear shuttling of chromatin remodeling protein CHD1, facilitating its function in pancreatic cancer cells.

199. PMID 21227392
Changes in DNA methylation of tumor suppressors can occur early in carcinogenesis and are potentially important early indicators of cancer. The objective of this study was to assess the methylation of 25 tumor suppressor genes in bladder cancer using a methylation-specific (MS) multiplex ligation-dependent probe amplification assay (MLPA). Initial analyses in bladder cancer cell lines (n = 14) and fresh-frozen primary bladder tumor specimens (n = 31) supported the panel of genes selected being altered in bladder cancer. The process of MS-MLPA was optimized for its application in body fluids using two independent training and validation sets of urinary specimens (n = 146), including patients with bladder cancer (n = 96) and controls (n = 50). BRCA1 (71.0%), WT1 (38.7%), and RARB (38.7%) were the most frequently methylated genes in bladder tumors, with WT1 methylation being significantly associated with tumor stage (P = 0.011). WT1 and PAX5A were identified as methylated tumor suppressors. In addition, BRCA1, WT1, and RARB were the most frequently methylated genes in urinary specimens. Receiver operating characteristic curve analyses revealed significant diagnostic accuracies in both urinary sets for BRCA1, RARB, and WT1. The novelty of this report relates to applying MS-MLPA, a multiplexed methylation technique, for tumor suppressors in bladder cancer and body fluids. Methylation profiles of tumor suppressor genes were clinically relevant for histopathological stratification of bladder tumors and offered a noninvasive diagnostic strategy for the clinical management of patients affected with uroepithelial neoplasias.

200. PMID 21297586
Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.

201. PMID 22220212
Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer.

202. PMID 20562917
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of 11 of the 16 known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2'-deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored the expression of each of the silenced gene. Forced expression of CXCL14 in H23 cells, where this gene is silenced by methylation, increased cell death in vitro and dramatically reduced the in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1000 genes, including increased expression of 30 cell-cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early-stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared with controls, substantiating its potential as a biomarker for early detection of lung cancer. Together, these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.

203. PMID 22117060
Chemoresistance prevents effective cancer therapy and is rarely predictable prior to treatment, particularly for hepatocellular carcinoma (HCC). Following the chemoresistance profiling of eight HCC cell lines to each of nine chemotherapeutics, two cell lines (QGY-7703 as a sensitive and SMMC-7721 as a resistant cell line to 5-fluorouracil (5-FU) treatment) were systematically studied for mechanistic insights underpinning HCC 5-FU chemoresistance. Genomic profiling at both DNA methylation and microRNA (miR) levels and subsequent mechanistic studies illustrate a new mechanism for how DNA methylation-regulated miR-193a-3p dictates the 5-FU resistance of HCC cells via repression of serine/arginine-rich splicing factor 2 (SRSF2) expression. In turn, SRSF2 preferentially up-regulates the proapoptotic splicing form of caspase 2 (CASP2L) and sensitizes HCC cells to 5-FU. Forced changes of miR-193a-3p level reverse all of the phenotypic features examined, including cell proliferation, cell cycle progression, and 5-FU sensitivity, in cell culture and in nude mice. Importantly, the siRNA-mediated repression of SRSF2 phenocopies all of the miR-193a-3p mimic-triggered changes in QGY-7703. This newly identified miR-193a-3p-SRSF2 axis highlights a new set of companion diagnostics required for optimal 5-FU therapy of HCC, which involve assaying both the DNA methylation state of the miR-193a gene and the expression of miR-193a-3p and SRSF2 and the relative level of the proapoptotic versus antiapoptotic splicing forms of caspase 2 in clinical samples.

204. PMID 22186629
Chromodomain helicase DNA binding protein 5 (CHD5) is a potent tumor suppressor that serves as a master regulator of a tumor-suppressive network. Examination of the role played by CHD5 in a wide range of human cancers is warranted. In this study, we focused on the epigenetic modification and tumor-suppressive role of CHD5 in lung cancer. We measured CHD5 mRNA and protein expression in lung cancer cells, lung cancer tissues, and their corresponding noncancerous lung tissues using real-time PCR and Western blot analysis. We then determined the methylation status of the CHD5 promoter in these samples using methylation-specific sequencing and analyzed CHD5 re-expression in lung cancer cells treated with or without 5-aza-2-deoxycytidine, an inhibitor of DNA methylation. Next, the lung cancer cell clones stably expressing EGFP-CHD5 protein or EGFP protein, respectively, were obtained and the effects of restored CHD5 expression on cell proliferation, colony formation, and tumorigenicity were assessed. CHD5 expression ranged from low to absent in the lung cancer cell lines and tissues examined; the CHD5 promoter was hyperethylated in these samples. Treatment with 5-aza-dC resulted in a localized decrease in methylation density and an increase in CHD5 expression. Clonogenicity and tumor growth were abrogated in A549 and H1299 cells upon restoration of CHD5 expression. A significant reduction in clonogenicity was observed; an average of 47.83±4.6% reduction for A549-EGFP-CHD5 was observed compared to A549-EGFP, and an average of 56.39±5.3% reduction for H1299-EGFP-CHD5 was observed compared to H1299-EGFP. A549-EGFP exhibited an average tumor size of 452.3±36.5mm(3), whereas A549-EGFP-CHD5 exhibited an average tumor size of only 57.7±18.5mm(3). Thus, our findings indicate that CHD5 is a potential tumor suppressor gene that is inactivated via an epigenetic mechanism in lung cancer.

205. PMID 18339850
Chromosomal aberrations associated with lung cancer are frequently observed in the long arm of chromosome 6. A candidate susceptibility locus at 6q23-25 for lung cancer was recently identified; however, no tumor suppressor genes inactivated by mutation have been identified in this locus. Genetic, epigenetic, gene expression, and in silico screening approaches were used to select 43 genes located in 6q12-27 for characterization of methylation status. Twelve (28%) genes were methylated in at least one lung cancer cell line, and methylation of 8 genes was specific to lung cancer cell lines. Five of the 8 genes with the highest prevalence for methylation in cell lines (TCF21, SYNE1, AKAP12, IL20RA, and ACAT2) were examined in primary lung adenocarcinoma samples from smokers (n = 100) and never smokers (n = 75). The prevalence for methylation of these genes was 81%, 50%, 39%, 26%, and 14%, respectively, and did not differ by smoking status or age at diagnosis. Transcription of SYNE1, AKAP12, and IL20RA was completely silenced by hypermethylation and could be restored after treatment with 5-aza-2-deoxycytidine. Significant associations were found between methylation of SYNE1 and TCF21, SYNE1 and AKAP12, and AKAP12 and IL20RA, indicating a coordinated inactivation of these genes in tumors. A higher prevalence for methylation of these genes was not associated with early-onset lung cancer cases, most likely precluding their involvement in familial susceptibility to this disease. Together, our results indicate that frequent inactivation of multiple candidate tumor suppressor genes within chromosome 6q likely contributes to development of sporadic lung cancer.

206. PMID 21521783
Chromosomal translocations of the mixed lineage leukemia (MLL) gene are a common cause of acute leukemias. The oncogenic function of MLL fusion proteins is, in part, mediated through aberrant activation of Hoxa genes and Meis1, among others. Here we demonstrate using a tamoxifen-inducible Cre-mediated loss of function mouse model that DOT1L, an H3K79 methyltransferase, is required for both initiation and maintenance of MLL-AF9-induced leukemogenesis in vitro and in vivo. Through gene expression and chromatin immunoprecipitation analysis we demonstrate that mistargeting of DOT1L, subsequent H3K79 methylation, and up-regulation of Hoxa and Meis1 genes underlie the molecular mechanism of how DOT1L contributes to MLL-AF9-mediated leukemogenesis. Our study not only provides the first in vivo evidence for the function of DOT1L in leukemia, but also reveals the molecular mechanism for DOT1L in MLL-AF9 mediated leukemia. Thus, DOT1L may serve as a potential therapeutic target for the treatment of leukemia caused by MLL translocations.

207. PMID 22321817
Chromosome 3 specific NotI microarrays containing 180 NotI linking clones associated with 188 genes were hybridized to NotI representation probes prepared using matched tumor/normal samples from major epithelial cancers: breast (47 pairs), lung (40 pairs) cervical (43 pairs), kidney (34 pairs of clear cell renal cell carcinoma), colon (24 pairs), ovarian (25 pairs) and prostate (18 pairs). In all tested primary tumors (compared to normal controls) methylation and/or deletions was found. For the first time we showed that the gene LRRC3B was frequently methylated and/or deleted in breast carcinoma - 32% of samples, cervical - 35%, lung - 40%, renal - 35%, ovarian - 28%, colon - 33% and prostate cancer - 44%. To check these results bisulfite sequencing using cloned PCR products with representative two breast, one cervical, two renal, two ovarian and two colon cancer samples was performed. In all cases methylation was confirmed. Expression analysis using RT-qPCR showed that LRRC3B is strongly down-regulated at the latest stages of RCC and ovarian cancers. In addition we showed that LRRC3B exhibit strong cell growth inhibiting activity (more than 95%) in colony formation experiments in vitro in KRC/Y renal cell carcinoma line. All these data suggest that LRRC3B gene could be involved in the process of carcinogenesis as a tumor suppressor gene.

208. PMID 20657189
Chromosome 3p harbors multiple tumor-suppressor genes. PLCD1, located at 3p22, encodes an enzyme that mediates regulatory signaling of energy metabolism, calcium homeostasis and intracellular movement. We investigated the epigenetic alterations of PLCD1 and its tumor suppressor function in breast cancer. Frequent downregulation/silencing of PLCD1 was shown in most breast cancer cell lines by using semi-quantitative PCR. Promoter methylation of PLCD1 was detected in 78% (7/9) of cell lines and 52% (13/25) of primary tumors by Methylation-specific PCR (MSP), but not in any tumor adjacent breast tissues and normal breast tissues, which was further confirmed by bisulfite genomic sequencing (BGS). The silencing of PLCD1 could be reversed by pharmacological demethylation, indicating a methylation-mediated mechanism. Ectopic expression of PLCD1 in silenced breast cancer cells significantly inhibited their colony formation. In addition, PLCD1 inhibited tumor cell migration and induced cell cycle G(2)/M arrest. Thus, this study for the first time demonstrates the frequent inactivation of PLCD1 by promoter methylation and its tumor inhibitory function in breast cancer. Tumor-specific methylation of PLCD1 might serve as a biomarker for possible early detection and prognosis prediction of breast cancer.

209. PMID 22363173
Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization of phosphorylated ATM and ?-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting the risk of inflammation-related cancers.

210. PMID 20980348
Chronic inflammation is deeply involved in induction of aberrant DNA methylation, but it is unclear whether any type of persistent inflammation can induce methylation and how induction of cell proliferation is involved. In this study, Mongolian gerbils were treated with five kinds of inflammation inducers [Helicobacter pylori with cytotoxin-associated gene A (CagA), H.pylori without CagA, Helicobacter felis, 50% ethanol (EtOH) and saturated sodium chloride (NaCl) solution]. Two control groups were treated with a mutagenic carcinogen that induces little inflammation (20 p.p.m. of N-methyl-N-nitrosourea) and without any treatment. After 20 weeks, chronic inflammation with lymphocyte and macrophage infiltration was prominent in the three Helicobacter groups, whereas neutrophil infiltration was mainly observed in the EtOH and NaCl groups. Methylation levels of eight CpG islands significantly increased only in the three Helicobacter groups. By Ki-67 staining, cell proliferation was most strongly induced in the NaCl group, demonstrating that induction of cell proliferation is not sufficient for methylation induction. Among the inflammation-related genes, Il1b, Nos2 and Tnf showed increased expression specifically in the three Helicobacter groups. In human gastric mucosae infected by H.pylori, NOS2 and TNF were also increased. These data showed that inflammation due to infection of the three Helicobacter strains has a strong potential to induce methylation, regardless of their CagA statuses, and increased cell proliferation was not sufficient for methylation induction. It was suggested that specific types of inflammation characterized by expression of specific inflammation-related genes, along with increased cell proliferation, are necessary for methylation induction.

211. PMID 21051931
Chronic lymphocytic leukemia (CLL) exhibits a very variable clinical course. Altered DNA methylation of genes has shown promise as a source of novel prognostic makers in a number of cancers. Here we have studied the potential utility of a panel of methylation markers (CD38, HOXA4 and BTG4) in 118 CLL patients. Each of the three loci assessed exhibited frequent methylation, as determined by COBRA analysis, and individually correlated with either good (CD38, BTG4 methylation) or poor (HOXA4 methylation) prognosis. Using a combined approach to produce an overall methylation score, we found that methylation score was significantly associated with time to first treatment in CLL patients. Multivariate Cox regression analysis revealed that methylation score was the strongest predictor of time to first treatment, and was independent of IGHV gene mutational status and CD38 expression. This study provides proof of principle that a panel of methylation markers can be used for additional risk stratification of CLL patients.

212. PMID 21139082
Chronic lymphocytic leukemia (CLL) is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Aiolos, a member of the Ikaros family of zinc-finger transcription factors, plays an important role in the control of mature B lymphocyte differentiation and maturation. In this study, we showed that Aiolos expression is up-regulated in B-CLL cells. This overexpression does not implicate isoform imbalance or disturb Aiolos subcellular localization. The chromatin status at the Aiolos promoter in CLL is defined by the demethylation of DNA and an enrichment of euchromatin associated histone markers, such as the dimethylation of the lysine 4 on histone H3. These epigenetic modifications should allow its upstream effectors, such as nuclear factor-?B, constitutively activated in CLL, to gain access to promoter, resulting up-regulation of Aiolos. To determine the consequences of Aiolos deregulation in CLL, we analyzed the effects of Aiolos overexpression or down-regulation on apoptosis. Aiolos is involved in cell survival by regulating the expression of some Bcl-2 family members. Our results strongly suggest that Aiolos deregulation by epigenetic modifications may be a hallmark of CLL.

213. PMID 22328940
Chronic myelomonocytic leukemia (CMML) has recently been associated with a high incidence of diverse mutations in genes such as TET2 or EZH2 that are implicated in epigenetic mechanisms. We have performed genome-wide DNA methylation arrays and mutational analysis of TET2, IDH1, IDH2, EZH2 and JAK2 in a group of 24 patients with CMML. 249 genes were differentially methylated between CMML patients and controls. Using Ingenuity pathway analysis, we identified enrichment in a gene network centered around PLC, JNK and ERK suggesting that these pathways, whose deregulation has been recently described in CMML, are affected by epigenetic mechanisms. Mutations of TET2, JAK2 and EZH2 were found in 15 patients (65%), 4 patients (17%) and 1 patient (4%) respectively while no mutations in the IDH1 and IDH2 genes were identified. Interestingly, patients with wild type TET2 clustered separately from patients with TET2 mutations, showed a higher degree of hypermethylation and were associated with higher risk karyotypes. Our results demonstrate the presence of aberrant DNA methylation in CMML and identifies TET2 mutant CMML as a biologically distinct disease subtype with a different epigenetic profile.

214. PMID 22180460
Clinical observations and epidemiologic studies suggest that the incidence of head and neck squamous cell carcinoma (HNSCC) correlates with dental hygiene, implying a role for bacteria-induced inflammation in its pathogenesis. Here we begin to explore the pilot hypothesis that specific microbial populations may contribute to HNSCC pathogenesis via epigenetic modifications in inflammatory- and HNSCC-associated genes. Microbiomic profiling by 16S rRNA sequencing of matched tumor and adjacent normal tissue specimens in 42 individuals with HNSCC demonstrate a significant association of specific bacterial subpopulations with HNSCC over normal tissue (P < 0.01). Furthermore, microbial populations can separate tumors by tobacco status (P < 0.008), but not by alcohol status (P = 0.41). If our subhypothesis regarding a mechanistic link from microorganism to carcinogenesis via inflammation and consequent aberrant DNA methylation is correct, then we should see hypermethylation of relevant genes associate with specific microbiomic profiles. Methylation analysis in four genes (MDR1, IL8, RARB, TGFBR2) previously linked to HNSCC or inflammation shows significantly increased methylation in tumor samples compared with normal oral mucosa. Of these, MDR1 promoter methylation associates with specific microbiomic profiles in tumor over normal mucosa. Additionally, we report that MDR1 methylation correlates with regional nodal metastases in the context of two specific bacterial subpopulations, Enterobacteriaceae and Tenericutes (P <; 0.001 for each). These associations may lead to a different, and potentially more comprehensive, perspective on the pathogenesis of HNSCC, and support further exploration of mechanistic linkage and, if so, novel therapeutic strategies such as demethylating agents and probiotic adjuncts, particularly for patients with advanced or refractory disease.

215. PMID 19096014
Clinical responses of solid tumors after allogeneic human leukocyte antigen-matched stem cell transplantation (SCT) often coincide with severe graft-versus-host disease (GVHD). Targeting minor histocompatibility antigens (mHags) with hematopoiesis- and cancer-restricted expression, for example, HA-1, may allow boosting the antitumor effect of allogeneic SCT without risking severe GVHD. The mHag HA-1 is aberrantly expressed in cancers of most entities. However, an estimated 30% to 40% of solid tumors do not express HA-1 (ie, are HA-1(neg)) and cannot be targeted by HA-1-specific immunotherapy. Here, we investigated the transcriptional regulation of HA-1 gene expression in cancer. We found that DNA hypermethylation in the HA-1 promoter region is closely associated with the absence of HA-1 gene expression in solid tumor cell lines. Moreover, we detected HA-1 promoter hypermethylation in primary cancers. The hypomethylating agent 5-aza-2'-deoxycytidine induced HA-1 expression only in HA-1(neg) tumor cells and sensitized them for recognition by HA-1-specific cytotoxic T lymphocytes. Contrarily, the histone deacetylation inhibitor trichostatin A induced HA-1 expression both in some HA-1(neg) tumor cell lines and in normal nonhematopoietic cells. Our data suggest that promoter hypermethylation contributes to the HA-1 gene regulation in tumors. Hypomethylating drugs might extend the safe applicability of HA-1 as an immunotherapeutic target on solid tumors after allogeneic SCT.

216. PMID 18003927
Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease.

217. PMID 21238786
Colon carcinogenesis encompasses the stepwise accumulation of genomic aberrations correlated with the transition of aberrant crypt-adenoma-carcinoma. Recent data have revealed that, in addition to the microsatellite-instable phenotype, the chromosome instability pathway, representing four fifth of the colon carcinoma, could be involved in heterogeneous molecular alterations. Our project was aimed at determining the existence of distinct molecular subtypes in 159 non-microsatellite-instable colon polyps and their correlation with histology and dysplasia, using allelotyping, MGMT promoter gene methylation status, and K-RAS mutation analyses. Allelic imbalance, MGMT methylation, and K-RAS mutations arise in 62%, 39%, and 32% of polyps, respectively. Only 14% of polyps had no alterations. A 2-way hierarchical clustering analysis of the allelic imbalances identified subgroups of polyps according to their allelic imbalance frequency and distribution. Not only tubulovillous adenoma but also high-grade adenomas were correlated with high global allelic imbalance frequency (P = .005 and P = .003), with allelic imbalance at microsatellites targeting chromosomes 1, 6, and 9. In conclusion, the data presented in this study show that a large heterogeneity exists in the molecular patterns of alterations in precancerous colon lesions, favoring different modes of tumor initiation. Therefore, molecular alterations correlated with tubulovillous-type and high-grade dysplasia could represent targets identifying predictive factors of progression.

218. PMID 21681432
Colorectal cancer (CRC) corresponds to the third most prevalent type of cancer. Its origins can either be sporadic or inherited, being Lynch syndrome the most common form of hereditary CRC. The activation of BRAF oncogene, inactivation of mismatch repair genes by methylation of CpG islands, and microsatellite instability (MSI) have been reported to be involved in CRC development. The goal of the study was to characterize CRC tumors using clinical and molecular criteria through association and cluster analysis. Amsterdam II and Bethesda guidelines and molecular variables were analyzed in 77 patients from Brazil. The replication error (RER) status, based in microsatellite instability, showed association with metachronous tumor, MLH1 gene methylation and inverse association with left-sided and synchronous tumors. The PMS2 gene was considered the best predictor for differentiating levels of methylation and the mononucleotide were considered the best markers to evaluate RER status. The cluster 1 was characterized of individuals over 60 years of age, female, right-sided tumor, high microsatellite instability, and metachronous or synchronous tumors. The individuals in cluster 2 were younger than 45 years of age, male and showed left sided or rectum tumors, and microsatellite stability. Even though it was not observed a significant association, a higher number of individuals with family history of cancer and tumors without promoter methylation were found in cluster 2. The V600E mutation did not show association with clinical or molecular characteristics. Evaluation of MSI and methylation of MLH1 and PMS2 genes should be considered in order to assist with clinical diagnosis.

219. PMID 18048385
Colorectal cancer (CRC) is a complex and heterogeneous disease in which genomic instability and DNA promoter methylation play important roles. The aim of this study was to investigate the relationship between chromosomal instability (CIN), microsatellite instability (MSI) and promoter methylation of CRC-associated genes. Therefore, 71 CRCs were analysed for CIN and MSI by comparative genomic hybridization and the mononucleotide marker BAT-26, respectively. Promoter methylation of the tumour suppressor and DNA repair genes hMLH1, O(6)-MGMT, APC, p14(ARF), p16(INK4A), RASSF1A, GATA-4, GATA-5 and CHFR was analysed using methylation-specific polymerase chain reaction. These integrative analyses showed that in CIN+ CRCs, promoter methylation of GATA-4 and p16(INK4A) was inversely related to chromosomal loss at 15q11-q21 and gain at 20q13, respectively (P values: 3.8 x 10(-2) and 4.5 x 10(-2), respectively). Interestingly, promoter methylation of RASSF1A, GATA-4, GATA-5 and CHFR, as well as a high methylation index (MI), was positively related to chromosomal gain at 8q23-qter (P values: 1.5 x 10(-2), 3.8 x 10(-2), 3.9 x 10(-2), 4.9 x 10(-2) and 8.2 x 10(-3), respectively). MSI was associated with BRAF mutation, promoter methylation of hMLH1, APC and p16(INK4A) and a high MI (total number of methylated genes) (P values: 2.4 x 10(-2), 2.5 x 10(-3), 1.8 x 10(-2), 4.6 x 10(-2) and 1.0 x 10(-2), respectively). Therefore, we conclude that promoter methylation of pivotal tumour suppressor and DNA repair genes is associated with specific patterns of chromosomal changes in CRC, which are different from methylation patterns in MSI tumours.

220. PMID 22368298
Colorectal cancer (CRC) that demonstrates microsatellite instability (MSI) is caused by either germline mismatch repair (MMR) gene mutations, or 'sporadic' somatic tumour MLH1 promoter methylation. MLH1 promoter methylation is reportedly correlated with tumour BRAF V600E mutation status. No systematic review has been undertaken to assess the value of BRAF V600E mutation and MLH1 promoter methylation tumour markers as negative predictors of germline MMR mutation status. A literature review of CRC cohorts tested for MMR mutations, and tumour BRAF V600E mutation and/or MLH1 promoter methylation was conducted using PubMed. Studies were assessed for tumour features, stratified by tumour MMR status based on immunohistochemistry or MSI where possible. Pooled frequencies and 95% CIs were calculated using a random effects model. BRAF V600E results for 4562 tumours from 35 studies, and MLH1 promoter methylation results for 2975 tumours from 43 studies, were assessed. In 550 MMR mutation carriers, the BRAF V600E mutation frequency was 1.40% (95% CI 0.06% to 3%). In MMR mutation-negative cases, the BRAF V600E mutation frequency was 5.00% (95% CI 4% to 7%) in 1623 microsatellite stable (MSS) cases and 63.50% (95% CI 47% to 79%) in 332 cases demonstrating MLH1 methylation or MLH1 expression loss. MLH1 promoter methylation of the 'A region' was reported more frequently than the 'C region' in MSS CRCs (17% vs 0.06%, p<0.0001) and in MLH1 mutation carriers (42% vs 6%, p<0.0001), but not in MMR mutation-negative MSI-H CRCs (40% vs 47%, p=0.12). Methylation of the 'C region' was a predictor of MMR mutation-negative status in MSI-H CRC cases (47% vs 6% in MLH1 mutation carriers, p<0.0001). This review demonstrates that tumour BRAF V600E mutation, and MLH1 promoter 'C region' methylation specifically, are strong predictors of negative MMR mutation status. It is important to incorporate these features in multifactorial models aimed at predicting MMR mutation status.

221. PMID 21499309
Colorectal cancer is a common disease with high mortality. Suitable biomarkers for detection of tumors at an early curable stage would significantly improve patient survival. Here, we show that the SPG20 (spastic paraplegia-20) promoter, encoding the multifunctional Spartin protein, is hypermethylated in 89% of colorectal carcinomas, 78% of adenomas and only 1% of normal mucosa samples. SPG20 methylation was also present in a pilot series of stool samples and corresponding tumors from colorectal cancer patients. SPG20 promoter hypermethylation resulted in loss of mRNA expression in various cancer types and subsequent depletion of Spartin. We further showed that Spartin downregulation in cancer cells resulted in cytokinesis arrest, which was reversed when SPG20 methylation was inhibited.

222. PMID 21036793
Colorectal cancer is a complex disease resulting from somatic genetic and epigenetic alterations, including locus-specific CpG island methylation and global DNA or LINE-1 hypomethylation. Global molecular characteristics such as microsatellite instability (MSI), CpG island methylator phenotype (CIMP), global DNA hypomethylation, and chromosomal instability cause alterations of gene function on a genome-wide scale. Activation of oncogenes including KRAS, BRAF and PIK3CA affects intracellular signalling pathways and has been associated with CIMP and MSI. Traditional epidemiology research has investigated various factors in relation to an overall risk of colon and/or rectal cancer. However, colorectal cancers comprise a heterogeneous group of diseases with different sets of genetic and epigenetic alterations. To better understand how a particular exposure influences the carcinogenic and pathologic process, somatic molecular changes and tumour biomarkers have been studied in relation to the exposure of interest. Moreover, an investigation of interactive effects of tumour molecular changes and the exposures of interest on tumour behaviour (prognosis or clinical outcome) can lead to a better understanding of tumour molecular changes, which may be prognostic or predictive tissue biomarkers. These new research efforts represent 'molecular pathologic epidemiology', which is a multidisciplinary field of investigations of the inter-relationship between exogenous and endogenous (eg, genetic) factors, tumoural molecular signatures and tumour progression. Furthermore, integrating genome-wide association studies (GWAS) with molecular pathological investigation is a promising area (GWAS-MPE approach). Examining the relationship between susceptibility alleles identified by GWAS and specific molecular alterations can help elucidate the function of these alleles and provide insights into whether susceptibility alleles are truly causal. Although there are challenges, molecular pathological epidemiology has unique strengths, and can provide insights into the pathogenic process and help optimise personalised prevention and therapy. In this review, we overview this relatively new field of research and discuss measures to overcome challenges and move this field forward.

223. PMID 21435086
Colorectal cancer is one of the leading death causes in the world. Specificity and sensitivity of the present screening methods are unsuitable and their compliance is too low. Nowadays the most effective method is the colonoscopy, because it gives not only macroscopic diagnosis but therapeutic possibility as well, however the compliance of the patients is very low. Hence development of new diagnostic methods is needed. Altered expression of septin 9 was found in several tumor types including colorectal cancer. The aim of this study was to detect the methylation related mRNA and protein expression changes of septin 9 in colorectal adenoma-dysplasia-carcinoma sequence and to analyze its reversibility by demethylation treatment. Septin 9 protein expression showed significant difference between normal and colorectal cancer (CRC) samples (p?<?0,001). According to biopsy microarray results, septin 9 mRNA expression decreased in the progression of colon neoplastic disease (p?<?0,001). In laser microdissected epithelial cells, septin 9 significantly underexpressed in CRC compared to healthy controls (p?<?0,001). The expression of septin9_v1 region was higher in the healthy samples, while septin9_v2, v4, v4*, v5 overexpression were detected in cancer epithelial cells compared to normal. The septin 9 mRNA and protein levels of HT29 cells increased after demethylation treatment. The increasing methylation of septin 9 gene during colorectal adenoma-dysplasia-carcinoma sequence progression is reflected in the decreasing mRNA and protein expression, especially in the epithelium. These changes can be reversed by demethylation agents converting this screening marker gene into therapeutic target.

224. PMID 22349300
Colorectal cancers (CRCs) are classified as having microsatellite instability (MSI) or chromosomal instability (CIN); herein termed microsatellite stable (MSS). MSI colon cancers frequently display a poorly differentiated histology for which the molecular basis is not well understood. Gene expression and immunohistochemical profiling of MSS and MSI CRC cell lines and tumors revealed significant down-regulation of the intestinal-specific cytoskeletal protein villin in MSI colon cancer, with complete absence in 62% and 17% of MSI cell lines and tumors, respectively. Investigation of 577 CRCs linked loss of villin expression to poorly differentiated histology in MSI and MSS tumors. Furthermore, mislocalization of villin from the membrane was prognostic for poorer outcome in MSS patients. Loss of villin expression was not due to coding sequence mutations, epigenetic inactivation, or promoter mutation. Conversely, in transient transfection assays villin promoter activity reflected endogenous villin expression, suggesting transcriptional control. A screen of gut-specific transcription factors revealed a significant correlation between expression of villin and the homeobox transcription factor Cdx-1. Cdx-1 overexpression induced villin promoter activity, Cdx-1 knockdown down-regulated endogenous villin expression, and deletion of a key Cdx-binding site within the villin promoter attenuated promoter activity. Loss of Cdx-1 expression in CRC lines was associated with Cdx-1 promoter methylation. These findings demonstrate that loss of villin expression due to Cdx-1 loss is a feature of poorly differentiated CRCs.

225. PMID 18937191
Colorectal carcinomas are the third most common malignant tumours worldwide with an incidence of 570,000 per year. According to their molecular mechanisms, sporadic colorectal carcinomas can be divided into two different phenotypes. The genetic phenotype, 50 to 70 % of all sporadic colorectal carcinomas, is characterised by a chromosomal instability (CIN) with the classical adenoma-carcinoma sequence due to alteration of the APC-betacatenin pathway with p53 mutations, SMAD alterations and LOH (loss of heterozygositiy) of 5q, 17 p 18q. On the other, the CpG island methylator phenotype (CIMP+) was described with an epigenetic inactivation of tumour suppressor genes that are typically inactivated by germline mutations in familiar cancer syndromes, e. g., Rb, VHL, hMLH1, p16 or BRCA. Colorectal carcinomas of the CIMP+ type often show a high microsatellite instability (MSI+) caused by aberrant promoter methylation of the missmatch repair gene hMLH1. Further CIMP+ are located in the proximal right-side colon and show a poor grading with mucinous or signet-cell differentiation.

226. PMID 22314183
Colorectal poorly differentiated neuroendocrine carcinomas (NECs) and mixed adenoneuroendocrine carcinomas (MANECs) are well-recognized entities generally known to be associated with biological aggressiveness and poor patient survival. However, a few published papers have highlighted the existence of a subgroup of tumors with a better survival than expected; however, to date, there are no established parameters that usefully identify this category. In the present study we have investigated the morphologic features, the CpG methylator phenotype (CIMP), microsatellite instability (MSI), and the immunohistochemical profile, including the expression of transcription factors (TTF1, ASH1, CDX2, and PAX5), stem cell markers (CD117 and CD34), and cytokeratins 7 and 20, in a series of 39 carcinomas (27 NECs and 12 MANECs) to better characterize such neoplasms and to search for prognostic indicators. No different patient survival was observed between NECs and MANECs. Neoplasms showed a heterogenous spectrum of morphologic and immunohistochemical features; however, only large-cell subtype, significant peritumoral lymphoid reaction, CD117 immunoreactivity, vascular invasion, and MSI/CIMP+ status were significantly correlated with prognosis on univariable analysis. Furthermore, vascular invasion and CD117 immunoreactivity were independent prognostic markers on multivariable analysis. In addition to these prognostic features, neoplasms showed different expression of transcription factors, stem cell markers, and cytokeratins that should be considered for diagnostic purposes and, especially, for discriminating among possible differential diagnoses.

227. PMID 21213371
Constitutional epimutation is one of the causes for MLH1 gene inactivation associated with hereditary non-polyposis colon cancer (HNPCC) syndrome. Here we investigate MLH1 promoter hypermethylation in 110 sporadic early-onset colorectal cancer patients. Variable levels of hypermethylation were detected in 55 patients (50%). Importantly a reduced MLH1 gene expression was found in patients with high-level methylation, with the association of microsatellite instability (MSI) in their tumor cells. Such high-level methylation accounts for 7.4% of all patients included in this study. Furthermore, we found that in one case constitutional methylation affected both alleles, indicating a post-zygotic methylation dysregulation. Our findings suggest that constitutional epimutation is a mechanism underlying early-onset colorectal cancer, although it is involved in only a small proportion of patients, who require appropriate surveillance. Our findings provide further insight into the role of aberrant constitutional methylation in colon carcinogenesis and raise the question of whether prevalent low-level methylation constitutes a potential risk factor for cancer development.

228. PMID 20421722
Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to uncontrolled cell-growth and impaired differentiation. We hypothesized that gene silencing mediated through aberrant promoter methylation of upstream Wnt antagonist genes might result in beta-catenin accumulation, resulting in constitutive Wnt activation. Wnt antagonist genes (SFRP1, WIF1, APC and CDH1) and CTNNB1 promoter methylation was examined in genomic DNA extracted from 12 urological cancer cell lines and correlated with CTNNB1 mRNA expression. Promoter methylation status was then assessed in 36 BCa, 30 PCa, 31 RCT, and normal bladder mucosa (15), prostate (10) and renal (5) tissue samples. Finally, CTNNB1 mRNA relative expression levels were correlated with Wnt antagonist gene methylation status in RCT. Methylation was found in at least one Wnt antagonist gene and the CTNNB1 promoter was unmethylated in all cancer cell lines tested. When gene methylation levels were compared between cancer cell lines with high and low CTNNB1 mRNA expression, a trend was found for increased CDH1 promoter methylation levels in the former. BCa and PC a tumors demonstrated high frequency of promoter methylation at all tested genes. In RCT, CTNNB1 was unmethylated in all cases and the overall frequency of promoter methylation at the remainder genes was lower. Interestingly, median CTNNB1 mRNA expression levels were significantly higher in RCTs methylated in at least one Wnt antagonist gene promoter. We concluded that epigenetic deregulation of Wnt pathway inhibitors may contribute to aberrant activation of Wnt signaling pathway in bladder, prostate and renal tumors.

229. PMID 21818116
Constitutive and persistent activation of STAT3 has been implicated in the pathogenesis of many malignancies. Studies of CTCL cell lines have previously suggested that aberrant activation of STAT3 is mediated via silencing of the negative regulator SHP-1 by promoter methylation. In this study of ex vivo tumour cell populations from 18 Sézary syndrome (SS) patients, constitutive phosphorylation of STAT3, JAK1 and JAK2 was present in all patients, but was absent in comparative CD4+ T-cells from healthy controls. Furthermore, no loss or significant difference in SHP-1 expression was observed between patients and healthy control samples. Methylation-specific PCR analysis of the SHP-1 CpG island in 47 SS patients and 11 healthy controls did not detect any evidence of methylation. Moreover, small interfering RNA knockdown of SHP-1 had no effect on phosphorylation of STAT3. In contrast, treatment of SS tumour cells with the pan-JAK inhibitor pyridone 6 led to downregulation of phosphorylated STAT3 (pSTAT3), its target genes and induction of apoptosis. No evidence for common JAK1/JAK2-activating mutations was found. These data demonstrate that constitutive activation of STAT3 in SS is not due to the loss of SHP-1, but is mediated by constitutive aberrant activation of JAK family members.

230. PMID 20737480
Conventional osteosarcoma is characterized by rapid growth, high local aggressiveness, and metastasizing potential. Patients developing lung metastases experience poor prognosis despite extensive chemotherapy regimens and surgical interventions. Previously we identified a subgroup of osteosarcoma patients with loss of CDKN2A/p16 protein expression in the primary tumor biopsies which was significantly predictive of a very poor prognosis. Here we aimed to identify the underlying mechanism(s) of this protein loss in relation to osteosarcoma behavior. The CDKN2A locus was analyzed in osteosarcoma cases with total loss of CDKN2A/p16 expression and in cases with high protein expression using melting curve analysis-methylation assay (MCA-Meth), fluorescent in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and mutation analysis. All cases with complete CDKN2A/p16 protein loss showed homozygous deletions at the CDKN2A locus. In none of the cases hyper methylation of the promoter region was seen which was confirmed by sequencing this region. Taken together we show that large or smaller deletions of the CDKN2A locus are evident in patient samples and underlie the CDKN2A/p16 protein expression loss while promoter methylation does not appear to be a mechanism of this expression loss. Genomic loss of CDKN2A instead of promoter methylation might be a plausible explanation for the rapid proliferation and high aggressiveness of osteosarcoma by simultaneous impairment CDKN2A/p14(ARF) function.

231. PMID 18087279
CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer.

232. PMID 20345486
CpG island hypermethylation is frequently found during gastric carcinogenesis. We investigated methylation profiles of p16, LOX, HAND1, THBD, p41ARC, and APC along multistep gastric carcinogenesis and determined their association with Helicobacter pylori infection. Methylation levels in these six genes were evaluated in noncancerous gastric biopsy specimens using quantitative methylation-specific PCR in 459 patients with gastric cancer (GC), 137 with dysplasia, and 248 controls. Controls were divided into four subgroups sorted by current H. pylori infection status (active vs past or negative infection) and the presence of intestinal metaplasia (IM). In controls, active H. pylori infection significantly increased methylation levels in THBD, LOX, and HAND1 (all P < 0.001), and hypermethylation of THBD, HAND1, and APC was associated with IM. Aberrant DNA hypermethylation was correlated well with activity of H. pylori-associated gastritis. However, methylation levels in LOX, HAND1, THBD, and p41ARC remained increased in cases with past H. pylori infection compared to those that were H. pylori negative (all P < 0.05). Hypermethylation of THBD, and possibly p16, was significantly associated with GC, regardless of the status of current H. pylori infection (all P < 0.05). These results suggest that aberrant DNA hypermethylation caused by H. pylori-associated gastritis occurs in a gene-specific manner along gastric carcinogenesis, which can be persistent even after the disappearance of H. pylori. Aberrant methylation of THBD might provide a link between H. pylori infection and development of GC.

233. PMID 19268989
CpG island methylation in the promoter regions of tumor suppressor genes has been shown to occur in normal colonic tissue and can distinguish between subjects with and without colorectal neoplasms. It is unclear whether this relationship exists in other tissues such as blood. . DNA was extracted from frozen stored whole blood samples of 27 subjects with cancer, 30 with adenoma, 16 with hyperplastic polyps, and 57 disease-free subjects. DNA methylation in seven CpG sites close to the transcription start of estrogen receptor alpha was quantitated using pyrosequencing and expressed as a methylation index (average methylation across all CpG sites analyzed). Estrogen receptor alpha methylation in leukocyte DNA was compared with estrogen receptor alpha methylation in normal colonic mucosa DNA that had been previously determined in the same subjects. Estrogen receptor alpha was partially methylated (median, 4.3%; range, 0.0-12.6%) in leukocyte DNA in all subjects, with no significant difference between disease groups (P>0.05). Estrogen receptor alpha methylation in leukocytes was 60% lower than estrogen receptor alpha methylation in normal colonic tissue (P<0.001). Estrogen receptor alpha methylation in colonic tissue (P<0.001) and smoking (P=0.016) were determinants of estrogen receptor alpha methylation in leukocytes, independent of age, body mass index, gender, and disease status. In conclusion, there was a positive relationship between estrogen receptor alpha methylation in leukocytes and colonic tissue in subjects with and without colorectal tumors. However, unlike in colonic tissue, estrogen receptor alpha methylation in leukocytes was unable to distinguish between disease groups.

234. PMID 21660972
CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. . Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p < 0.0001) to more proximal tumour location, BRAF mutation, MSI-H, MGMT methylation (p = 0.022), advanced pT classification (p = 0.03), mucinous histology (p = 0.069), and less frequent KRAS mutation (p = 0.067) compared to CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p < 0.0001) and increased numbers of CD8+ intra-epithelial lymphocytes (p < 0.0001) were related to CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H.

235. PMID 17950780
CpG island methylator phenotype (CIMP) pathway in colorectal cancer is characterized by methylation of promoter regions of multiple putative tumor suppressor genes. Aberrant methylation also occurs in serrated and adenomatous polyps. We examined 32 tubulovillous/villous adenomas and 30 tubular adenomas for BRAF/KRAS mutations and methylation at hMLH1, p16, HIC1, RASSF2, MGMT, MINT1, and MINT31. CIMP-positive status (methylation at 3 or more loci) was observed in 44% tubulovillous/villous adenomas compared with 8 (27%) of 30 tubular adenomas (P = .08). Tubulovillous/villous adenomas showed significantly higher methylation than tubular adenomas at MGMT (87% vs 37%, P < .01) and RASSF2 (94% vs 70%, P = .02). There was no significant difference in methylation of HIC1, MINT1, MINT31, and p16. hMLH1 methylation was absent in all tubulovillous/villous adenomas and seen in only 2 (7%) tubular adenomas. CIMP-positive status correlated with large size, right-sided location, and amount of villous component in tubulovillous/villous adenomas. BRAF V600E mutation was not observed in any tubular adenoma or tubulovillous/villous adenoma. KRAS mutations were seen in 9% of tubulovillous/villous adenomas and 10% of tubular adenomas. In conclusion, CIMP-positive phenotype is common in tubulovillous/villous adenomas and increases with large size, right-sided location, and amount of villous component. . BRAF mutations are absent in tubulovillous/villous adenomas.

236. PMID 18089774
CpG island promoter hypermethylation of tumor suppressor genes is a common hallmark of human cancer, and new large-scale epigenomic technologies might be useful in our attempts to define the complete DNA hypermethylome of tumor cells. Here, we report a functional search for hypermethylated CpG islands using the colorectal cancer cell line HCT-116, in which two major DNA methyltransferases, DNMT1 and DNMT3b, have been genetically disrupted (DKO cells). Using methylated DNA immunoprecipitation methodology in conjunction with promoter microarray analyses, we found that DKO cells experience a significant loss of hypermethylated CpG islands. Further characterization of these candidate sequences shows CpG island promoter hypermethylation and silencing of genes with potentially important roles in tumorigenesis, such as the Ras guanine nucleotide-releasing factor (RASGRF2), the apoptosis-associated basic helix-loop transcription factor (BHLHB9), and the homeobox gene (HOXD1). Hypermethylation of these genes occurs in premalignant lesions and accumulates during tumorigenesis. Thus, our results show the usefulness of DNMT genetic disruption strategies combined with methylated DNA immunoprecipitation in searching for unknown hypermethylated candidate genes in human cancer that might aid our understanding of the biology of the disease and be of potential translational use.

237. PMID 20124482
Critical tumor suppression pathways in brain tumors have yet to be fully defined. Along with mutational analyses, genome-wide epigenetic investigations may reveal novel suppressor elements. Using differential methylation hybridization, we identified a CpG-rich region of the promoter of the dual-specificity mitogen-activated protein kinase phosphatase-2 gene (DUSP4/MKP-2) that is hypermethylated in gliomas. In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas. MKP-2 hypermethylation was associated with mutations in TP53 and IDH1, exclusive of EGFR amplification, and with prolonged survival of patients with primary glioblastoma. Expression analysis established that promoter hypermethylation correlated with reduced expression of MKP-2 mRNA and protein. Consistent with a regulatory role, reversing promoter hypermethylation by treating cells with 5-aza-2'-deoxycytidine increased MKP-2 mRNA levels. Furthermore, we found that glioblastoma cell growth was inhibited by overexpression of exogenous MKP-2. Our findings reveal MKP-2 as a common epigenetically silenced gene in glioma, the inactivation of which may play a significant role in glioma development.

238. PMID 20951943
Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model exhibit increased PRMT5 methyltransferase activity and histone arginine methylation. Analyses demonstrate that MEP50, a PRMT5 coregulatory factor, is a CDK4 substrate, and phosphorylation increases PRMT5/MEP50 activity. Increased PRMT5 activity mediates key events associated with cyclin D1-dependent neoplastic growth, including CUL4 repression, CDT1 overexpression, and DNA rereplication. Importantly, human cancers harboring mutations in Fbx4, the cyclin D1 E3 ligase, exhibit nuclear cyclin D1 accumulation and increased PRMT5 activity.

239. PMID 21166741
Cyclooxygenase-2 (COX-2) is overexpressed in various types of human malignancies including esophageal squamous cell carcinoma (ESCC). However, a subset of ESCC either do not express COX-2 or show low level of expression. It is well established that promoter methylation is a major mechanism that mediates transcriptional silencing of COX-2 in gastric and colorectal cancer, but the data on ESCC are very limited. In this study, we attempted to determine whether COX-2 expression was also regulated by promoter methylation in human ESCC cell lines. We examined the methylation status of the COX-2 promoter in five human ESCC cell lines (EC109, EC9706, KYSE 410, KYSE 150, TE-1) using bisulfite sequencing analysis. Western blot analysis was used to determine COX-2 expression. Quantitative real-time polymerase chain reaction was used to determine COX-2 mRNA level. Prostaglandin (PG) E(2) was detected by ELISA. The promoter was densely methylated in TE-1 and KYSE 150, which had a low level of COX-2 expression and less methylated in other three cell lines (EC109, EC9706, KYSE 410), with high level of COX-2 expression. Treatment with 5-aza-deoxycytidine (5-aza-DC), a DNA methyltransferase inhibitor, demethylated the promoter and upregulated COX-2 expression, as well as PGE(2) production in TE-1 and KYSE 150. However, no such effects were observed in EC109. COX-2 protein was negative, but mRNA was positive in TE-1. After treatment with 5-aza-DC, both COX-2 mRNA and protein level had increased. These findings suggest that the promoter methylation may be one of the mechanisms that regulate COX-2 expression in ESCC.

240. PMID 21856294
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in arachidonic acid cascade, plays a key role in the biosynthesis of prostaglandin E(2) (PGE(2)) upon inflammatory insults. Overproduction of PGE(2) stimulates proliferation of various cancer cells, confers resistance to apoptosis of cancerous or transformed cells, and accelerates metastasis and angiogenesis. Excess PGE(2) undergoes metabolic inactivation which is catalyzed by NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In this context, 15-PGDH has been speculated as a physiological antagonist of COX-2 and a tumor suppressor. Thus, overexpression of 15-PGDH has been known to protect against experimentally induced carcinogenesis and renders the cancerous or transformed cells susceptible to apoptosis by counteracting oncogenic action of PGE(2). In contrast, silence of 15-PGDH is observed in some cancer cells, which is associated with epigenetic modification, such as DNA methylation and histone deacetylation, in the promoter region of 15-PGDH. A variety of compounds capable of inducing the expression of 15-PGDH have been reported, which include the histone deacetylase inhibitors, nonsteroidal anti-inflammatory drugs, and peroxisome proliferator-activated receptor-gamma agonists. Therefore, 15-PGDH may be considered as a novel molecular target for cancer chemoprevention and therapy. This review highlights the role of 15-PGDH in carcinogenesis and its regulation.

241. PMID 21896932
Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho?=?0.96) and to pyrosequencing (rho?=?0.87). ; and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer.

242. PMID 21839064
DNA hypermethylation and silencing of tumor-suppressor genes are commonly seen in human cancers, and likely contribute to the process of carcinogenesis. A growing body of evidence suggests that dietary compounds may alter cancer risk through epigenetic modifications. Glutathione S-transferase P1 (GSTP1) is hypermethylated in >90% of prostate cancer cases making it one of the most common genome alterations in prostate cancer. LNCaP cells were treated either with lycopene or apo-10'-lycopenal for 7days, and mRNA expression and DNA methylation of GSTP1 were evaluated. Neither compound significantly altered expression nor methylation of GSTP1 while treatment with 5-azacytidine decreased methylation by 78%. These findings demonstrate that lycopene and apo-10'-lycopenal are not effective demethylating agents of GSTP1 in the human LNCaP cell line.

243. PMID 18635238
DNA hypermethylation is a common epigenetic abnormality in cancer and may serve as a useful marker to clone cancer-related genes as well as a marker of clinical disease activity. To identify CpG islands methylated in prostate cancer, we used methylated CpG island amplification (MCA) coupled with representational difference analysis (RDA) on prostate cancer cell lines. We isolated 34 clones that corresponded to promoter CpG islands, including 5 reported targets of hypermethylation in cancer. We confirmed the data for 17 CpG islands by COBRA and/or pyrosequencing. All 17 genes were methylated in at least 2 cell lines of a 21-cancer cell line panel containing prostate cancer, colon cancer, leukemia, and breast cancer. Based on methylation in primary tumors compared to normal adjacent tissues, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS and NSE1 are candidate biomarkers for prostate cancer (methylation range 50%-85%). The combination of NSE1 or SPOCK2 hypermethylation showed a sensitivity of 80% and specificity of 95% in differentiating cancer from normal. Similarly NKX2-5, SPOCK2, SLC16A12, DPYS and GALR2 are candidate biomarkers for colon cancer (methylation range 60%-95%) and GALR2 hypermethylation showed a sensitivity of 85% and specificity of 95%. Finally, SLC16A12, GALR2, TOX, SPOCK2, EGFR5 and DPYS are candidate biomarkers for breast cancer (methylation range 33%-79%) with the combination of EGFR5 or TOX hypermethylation showing a sensitivity of 92% and specificity of 92%. Expression analysis for eight genes that had the most hypermethylation confirmed the methylation associated silencing and reactivation with 5-aza-2'-deoxycytidine treatment. Our data identify new targets of transcriptional silencing in cancer, and provide new biomarkers that could be useful in screening for prostate cancer and other cancers.

244. PMID 22362391
DNA hypermethylation is frequently found in colorectal cancer (CRC). Methylation of helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) are potential and carcinoembryonic antigen (CEA) is an established prognostic factor in serum of patients with CRC. The aim of this study was to perform a direct comparison of the prognostic roles of these markers. Methylation status of HLTF and HPP1 was examined in pretherapeutic sera of 311 patients with CRC and matched primary tissues of 54 stage IV patients using methylation-specific quantitative PCR. CEA was determined using an immunoenzymometric assay. Methylation of HLTF and HPP1 DNA in serum significantly correlated with tumor size, stage, grade and metastatic disease. HPP1 methylation correlated with nodal status. Overall survival was shortened in case of methylation of HLTF or HPP1 or elevated levels of CEA (p < 0.0001 for all). In stage IV, patients survival was impaired if HLTF (p = 0.0005) or HPP1 (p = 0.0003) were methylated or CEA was above the median of 27 ng/ml (p = 0.002). Multivariate analysis revealed that methylation of HLTF [hazard ratio (HR) 1.8, p = 0.0438], HPP1 (HR 1.6, p = 0.0495) and CEA >27 ng/ml (HR 1.7, p = 0.0317) were independent prognostic factors in stage IV. The combination of any two or all three of these factors outperformed each marker on its own. In conclusion, the presence of methylated DNA of the genes HLTF or HPP1 in serum are independent prognostic factors in metastasized CRC. Prospective validation is required to determine their usefulness in clinical routine along with the established marker CEA.

245. PMID 20190193
DNA hypermethylation of the p15INK4b tumor suppressor gene is commonly observed in acute myeloid leukemia (AML). Repressive histone modifications and their associated binding proteins have been implicated in the regulation of DNA methylation and the transcriptional repression of genes with DNA methylation. We have used high-density chromatin immunoprecipitation-on-chip to determine the histone modifications that normally regulate p15INK4b expression in AML cells and how these marks are altered in cells that have p15INK4b DNA methylation. In AML patient blasts without p15INK4b DNA methylation, a bivalent pattern of active (H3K4me3) and repressive (H3K27me3) modifications exist at the p15INK4b promoter. AML patient blasts with p15INK4b DNA methylation lose H3K4me3 at p15INK4b and become exclusively marked by H3K27me3. H3K27me3, as well as EZH2, extends throughout p14ARF and p16INK4a, indicating that polycomb repression of p15INK4b is a common feature in all AML blasts irrespective of the DNA methylation status of the gene. Reactivation of p15INK4b expression in AML cell lines and patient blasts using 5-aza-2'-deoxycytidine (decitabine) and trichostatin A increased H3K4me3 and maintained H3K27me3 enrichment at p15INK4b. These data indicate that AML cells with p15INK4b DNA methylation have an altered histone methylation pattern compared with unmethylated samples and that these changes are reversible by epigenetic drugs.

246. PMID 20847044
DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. We found that DNMT3b associates with NEDD8-modified proteins. Whereas DNMT3b interacts directly in vitro with NEDD8, conjugation of NEDD8 to target proteins enhances this interaction in vivo. DNMT3b immunoprecipitated two major bands of endogenously NEDDylated proteins at the size of NEDDylated cullins, and indeed DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. Moreover, DNMT3b preferentially immunoprecipitated the NEDDylated form of endogenous CUL4A. NEDD8 enhanced DNMT3b-dependent DNA methylation. Chromatin immunoprecipitation assays suggest that DNMT3b recruits CUL4A and NEDD8 to chromatin, whereas deletion of Dnmt3b reduces the association of CUL4A and NEDD8 at a repressed promoter in a cancer cell line.

247. PMID 22207354
DNA methylation has been associated with age-related disease. Intra-individual changes in gene-specific DNA methylation over time in a community-based cohort has not been well described. We estimated the change in DNA methylation due to aging for nine genes in an elderly, community-dwelling cohort of men. Seven hundred and eighty four men from the Veterans Administration Normative Aging Study who were living in metropolitan Boston from 1999-2009 donated a blood sample for DNA methylation analysis at clinical examinations repeated at approximately 3- to 5-year intervals. We used mixed effects regression models. Aging was significantly associated with decreased methylation of GCR, iNOS and TLR2 and with increased methylation of IFN?, F3, CRAT and OGG. Obstructive pulmonary disease at baseline modified the effect of aging on methylation of IFN? (interaction p = 0.04). For participants who had obstructive pulmonary disease at their baseline visit, the rate of change of methylation of IFN? was -0.05% 5-methyl-cytosine (5-mC) per year (95% CI: -0.22, 0.13), but was 0.14% 5-mC per year (95% CI: 0.05, 0.24) for those without this condition. Models with random slopes indicated significant heterogeneity in the effect of aging on methylation of GCR, iNOS and OGG. These findings suggest that DNA methylation may reflect differential biological aging.

248. PMID 21555911
DNA methylation in AXL, a receptor tyrosine kinase relevant in cancer and immune function, is reportedly highly heritable. We present evidence to suggest that heritability of DNA methylation in AXL is variable, dependent on population characteristics and cell type studied. Moreover, environmental exposures in utero, particularly exposure to maternal smoking, contributes to variation in DNA methylation of select CpG loci that can affect calculations of heritability. Children exposed to maternal smoking in utero had a 2.3% increase (95 % CI 0.3, 4.2) in DNA methylation in AXL, which was magnified in girls as compared to boys. These results present compelling evidence that environmental exposure to tobacco smoke during pregnancy may alter DNA methylation levels in subtle but potentially important ways, and that these changes are persistent years after birth.

249. PMID 20212450
DNA methylation in gene promoters causes gene silencing and is a common event in cancer development and progression. The ability of aberrant methylation events to serve as diagnostic and prognostic markers is being appreciated for many cancers, including prostate cancer. Using quantitative MethyLight technology, we evaluated the relationship between HOXD3 methylation and clinicopathological parameters including biochemical recurrence, pathological stage, Gleason score (GS), and Gleason pattern in a series of 232 radical prostatectomies performed between 1998 and 2001. HOXD3 methylation was significantly greater in GS 7 cancers vs GS < or = 6 cancers (P-value <0.001) as well as pT3/pT4 vs pT2 cancers (P-value <0.001). The proportion of cases with high methylation in GS 7 vs < or = GS 6 and pT3/pT4 vs pT2 were also significantly different (P-values=0.002 and 0.005, respectively). There were also significant increases in methylation from Gleason pattern 2-3 and from pattern 3 to 4/5 (paired t-test P-values=0.01 and <0.001, respectively), whereas methylation from lymph node metastases was decreased when compared with matched tumor tissue (P-value=0.029). HOXD3 methylation was associated with biochemical recurrence in univariate analysis (P-value=0.043) and showed evidence for interaction with pathological stage as a predictor variable in Cox regression analysis (P-value=0.028). The results indicate that HOXD3 methylation distinguishes low-grade prostate cancers from intermediate and high-grade ones and may also have prognostic value when considered together with pathological stage.

250. PMID 21150880
DNA methylation is a hallmark in a subset of right-sided colorectal cancers. Methylation-based screening may improve prevention and survival rate for this type of cancer, which is often clinically asymptomatic in the early stages. We aimed to discover prognostic or diagnostic biomarkers for colon cancer by comparing DNA methylation profiles of right-sided colon tumours and paired normal colon mucosa using an 8.5 k CpG island microarray. We identified a diagnostic CpG-rich region, located in the first intron of the protein-tyrosine phosphatase gamma gene (PTPRG) gene, with altered methylation already in the adenoma stage, that is, before the carcinoma transition. Validation of this region in an additional cohort of 103 sporadic colorectal tumours and 58 paired normal mucosa tissue samples showed 94% sensitivity and 96% specificity. Interestingly, comparable results were obtained when screening a cohort of Lynch syndrome-associated cancers. Functional studies showed that PTPRG intron 1 methylation did not directly affect PTPRG expression, however, the methylated region overlapped with a binding site of the insulator protein CTCF. Chromatin immunoprecipitation (ChIP) showed that methylation of the locus was associated with absence of CTCF binding. Methylation-associated changes in CTCF binding to PTPRG intron 1 could have implications on tumour gene expression by enhancer blocking, chromosome loop formation or abrogation of its insulator function.

251. PMID 21600201
DNA methylation is a promising biomarker for cancer. This study was aimed at investigating the methylation levels of multiple genes in hepatocellular carcinoma (HCC) and to identify a combination of methylation markers that would be useful for the diagnosis of HCC. . The methylation levels of six genes (APC, CDKN2A, GSTP1, RASSF1A, SFRP1 and RUNX3) were significantly higher in HCCs than in adjacent NTs (P<0.05). Although the AUC (area under the curve) for each individual gene was low to moderate (range: 0.576 to 0.835) according to receiver operator characteristic (ROC) curve analysis, the combination analysis of these six genes resulted in an increase of AUC of 0.954 with 85.1% sensitivity, 89.4% specificity, 88.9% positive predictive value, and 85.7% negative predictive value in discriminating HCC tissues from NT tissues. These results indicate that the analysis of a combination of these six methylated genes may be a promising method for the risk assessment and diagnosis of HCC.

252. PMID 20447390
DNA methylation is considered as a potential cause of aberrations in regulation of gene expression during carcinogenesis. Therefore, changes in DNA methylation patterns may be targets for chemoprevention. In the present study, we investigated effects of all-trans retinoic acid (ATRA), vitamin D(3), and resveratrol alone and in combination with adenosine analogues: 2-chloro-2'-deoxyadenosine (2CdA) and 9-beta-D-arabinosyl-2-fluoroadenine (F-ara-A), on methylation and expression of retinoic acid receptor beta 2 (RAR beta 2) in MCF-7 and MDA-MB-231 breast cancer cell lines. Alterations in methylation and expression levels after treatment of cells with the tested compounds were evaluated by methylation-sensitive restriction analysis (MSRA) and real-time PCR, respectively. RAR beta 2 promoter in the tested fragment was partially methylated in MCF-7 cells and non-methylated in MDA-MB-231 cells. In MCF-7 cells, all compounds, except for resveratrol, inhibited promoter methylation and increased expression of RAR beta 2. All natural compounds improved the action of 2CdA and F-ara-A on RAR beta 2 methylation and/or expression. Combination of ATRA or vitamin D(3) with 2CdA was the most effective. In MDA-MB-231 cells, only 2CdA, F-ara-A, and ATRA induced RAR beta 2 expression without any notable effects in combined treatment. Our results demonstrate that both natural compounds and adenosine analogues are able to reduce promoter methylation and/or induce expression of RAR beta 2 in non-invasive MCF-7 cells. Furthermore, the natural compounds improve effects of adenosine analogues, however only at early non-invasive stages of carcinogenesis.

253. PMID 21169389
DNA methylation is coupled with one-carbon metabolism involving homocysteine/methionine interconversion. Correlation between plasma homocysteine levels and leukocyte global DNA methylation was reported but not always replicated. Nicotinamide N-methyltransferase (NNMT) is a determinant of plasma homocysteine levels. Findings suggest alteration of one-carbon metabolism in schizophrenia etiology; hyperhomocysteinemia was observed in schizophrenia. A recent study carried out by the authors of this paper found an association between NNMT and schizophrenia and decreased post-mortem brain NNMT mRNA levels. The present study assessed the interrelationship between brain and leukocytes global DNA methylation and plasma homocysteine levels, and between hyperhomocysteinemia and brain NNMT expression. Mice were administered homocysteine in drinking water. Percentage global genome DNA methylation was measured using the cytosine-extension method, and NNMT expression was measured using real-time quantitative reverse transcriptase PCR (qRT-PCR). Homocysteine administration resulted in a 10-fold increase in plasma homocysteine. However, there was no change in global DNA methylation in lymphocytes or in the frontal cortex. No significant intra-individual correlation was found between global DNA methylation in leukocytes and frontal cortex, suggesting that leukocyte global DNA methylation may not serve as a marker for brain global DNA methylation. No difference was found in NNMT expression in homocysteine-treated mice compared with control mice. In conclusion, relatively short-term hyperhomocysteinemia in mice does not reproduce or lead to alterations reported in one-carbon metabolism in disorders associated with lifelong elevated plasma homocysteine.

254. PMID 20655775
DNA methylation is one of the major epigenetic changes in human cancers, leading to silencing of tumor suppressor genes, with a pathogenetic role in tumor development and progression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Methylation of key promoter regions, induced by cytotoxic therapy together with complex genetic changes, is important in the biology of therapy-related myeloid neoplasms (t-MN). We were interested in the characterization of the methylation pattern of AML and MDS de novo and therapy-related. We studied 385 patients (179 females, 206 males), of a median age of 66 years (range 16-98 years). There were 105 MDS, 208 de novo AML and 72 t-MN (45 MDS and 27 AML). Using a methylation-specific PCR, we studied the promoter methylation status of E-cadherin (CDH1), TSP1 and DAP-Kinase 1. These genes have been shown to be involved in the malignant transformation, interfering with angiogenesis, interaction with micro-environment, apoptosis and xenobiotic detoxification. We found no associations between promoter hypermethylation and gender or age at the time of initial diagnosis. In patients with MDS, there were no associations between hypermethylation and clinical characteristics, including IPSS score, WHO classification and cytogenetics. DAPK1 was more frequently methylated in t-MDS/AML when compared to de novo MDS and AML (39% vs 15.3% and 24.4%, p=0.0001), while methylation of CDH1 was similar in t-MDS/AML and AML (51% and 53.4%), but less frequent in de novo MDS (29%) (p=0.003). In the t-MDS/AML group, we found that the methylation pattern appeared to be related to the primary tumor, with DAPK1 more frequently methylated in patients with a previous lymphoproliferative disease (75% vs 32%, p=0.006). On the other hand, methylation of CDH1 was associated to radiotherapy for the primary malignancy (84.5% vs 38%, p=0.003). TSP1 hypermethylation was rare and not characteristic of t-MDS/AML. In 177 patients studied for concurrent methylation of several promoters, t-MN and AML de novo were significantly more frequently hypermethylated in 2 or more promoter regions than de novo MDS (20% vs 12.4%, p<0.001). Chemotherapy and individual genetic predisposition have a role in t-MDS/AML development, the identification of specific epigenetic modifications may explain complexity and genomic instability of these diseases and give the basis for targeted-therapy. The significant association with previous malignancy subtypes may underlie a likely susceptibility to methylation of specific targets and a role for constitutional epimutations as predisposing factors for the development of therapy-related myeloid neoplasm.

255. PMID 20724461
DNA methylation is the main epigenetic modification that occurs at the early stages of carcinogenesis. We performed a genome-wide DNA methylation profiling to evaluate whether the DNA methylation state is different in the estrogen receptor (ER) and progesterone receptor (PR) status of breast cancer. Twelve ER+/PR+ and 12 ER-/PR- breast cancer tissues were selected from the biorepository of the Seoul Breast Cancer Study for Infinium Methylation Assay. The difference of the DNA methylation state of 27 578 methylation sites in 14 000 genes between two groups was evaluated by Student's t-test. False discovery rate (FDR) was estimated to evaluate the probability of false positive associations. Of the 27 578 sites, 148 sites (0.54%) were significantly different between ER+/PR+ and ER-/PR- breast cancers (P < 0.001); 93 hypermethylated and 55 hypomethylated. Five genes, FAM124B (P = 7.26 × 10(-7)), MANEAL (P = 3.38 × 10(-7)), ST6GALNAC1 (P = 2.85 × 10(-6)), NAV1 (P = 5.94 × 10(-6)) and PER1 (P = 6.45 × 10(-6)) remained significant after correction for multiple tests (FDR < 0.05). In a subsequent replication study for five genes, four of the five genes were validated; FAM124B and ST6GALNAC1 were significantly hypermethylated, and NAV1 and PER1 were significantly hypomethylated in ER+/PR+ breast cancers (P <; 0.05). In the first genome-wide DNA methylation profiling according to the receptor status of breast cancer, we found that ER/PR status affects the DNA methylation state of FAM124B, ST6GALNAC1, NAV1 and PER1 in breast cancer.

256. PMID 18635238
DNA methylation of CpG islands around gene transcription start sites results in gene silencing and plays a role in leukemia pathophysiology. Its impact in leukemia progression is not fully understood. We performed genomewide screening for methylated CpG islands and identified 8 genes frequently methylated in leukemia cell lines and in patients with acute myeloid leukemia (AML): NOR1, CDH13, p15, NPM2, OLIG2, PGR, HIN1, and SLC26A4. We assessed the methylation status of these genes and of the repetitive element LINE-1 in 30 patients with AML, both at diagnosis and relapse. Abnormal methylation was found in 23% to 83% of patients at diagnosis and in 47% to 93% at relapse, with CDH13 being the most frequently methylated. We observed concordance in methylation of several genes, confirming the presence of a hypermethylator pathway in AML. DNA methylation levels increased at relapse in 25 of 30 (83%) patients with AML. These changes represent much larger epigenetic dysregulation, since methylation microarray analysis of 9008 autosomal genes in 4 patients showed hypermethylation ranging from 5.9% to 13.6% (median 8.3%) genes at diagnosis and 8.0% to 15.2% (median 10.6%) genes in relapse (P < .001). Our data suggest that DNA methylation is involved in AML progression and provide a rationale for the use of epigenetic agents in remission maintenance.

257. PMID 21946329
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

258. PMID 21565170
DNA methylation plays a central role in the epigenetic regulation of gene expression during development and progression of cancer diseases. The inheritance of specific DNA methylation patterns are acquired in the early embryo and are specifically maintained after cellular replication via the DNA methyltransferase 1 (DNMT1). Recent studies have suggested that the enzymatic activity of DNMT1 is possibly modulated by phosphorylation of serine/threonine residues located in the N-terminal domain of the enzyme. In the present work, we report that cyclin-dependent kinases (CDKs) 1, 2 and 5 can phosphorylate Ser154 of human DNMT1 in vitro. Further evidence of phosphorylation of endogenous DNMT1 at position 154 by CDKs is also found in 293 cells treated with roscovitine, a specific inhibitor of CDK1, 2 and 5. To determine the importance of Ser154 phosphorylation, a mutant of DNMT1 encoding a single-point mutation at position 154 (S154A) was generated. This mutation induced a severe loss of enzymatic activity when compared to wild type DNMT1. Moreover, after treatment with 5-Aza-2'-Deoxycytidine (5-aza-dC), a faster decline in DNMT1 protein level was observed for HEK-293 cells expressing DNMT1(S154A) as compared to cells expressing wild type DNMT1. Our data suggest that phosphorylation of DNMT1 at Ser154 by CDKs is important for enzymatic activity and protein stability of DNMT1. Considering that tumour-associated cell cycle defects are often mediated by alterations in CDK activity, our results suggest that dysregulation of cell cycle via CDKs could induce abnormal phosphorylation of DNMT1 and lead to DNA hypermethylation often observed in cancer cells.

259. PMID 20398055
DNA methylation plays a critical role in chromatin remodeling and gene expression. DNA methyltransferases (DNMTs) are hypothesized to mediate cellular DNA methylation status and gene expression during mammalian development and in malignant diseases. In this study, we examined the role of DNA methyltransferase 1 (DNMT1) and DNMT3b in cell proliferation and survival of hepatocellular carcinoma (HCC) cells. Gene silencing of both DNMT1 and DNMT3b by targeted siRNA knockdown reduces cell proliferation and sensitizes the cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death. The proapoptotic protein caspase-8 demonstrated promoter hypermethylation in HCC cells and was up-regulated by knockdown of DNMT1 and DNMT3b both at mRNA and protein levels. In addition, death receptor TRAIL-R2/DR5 (TRAIL receptor 2/death receptor 5) did not exhibit promoter hypermethylation in HCC cells but was also up-regulated by knockdown of DNMT1 and DNMT3b both at mRNA and protein levels. Consistent with this observation, the combined transfection of DNMT1-siRNA plus DNMT3b-siRNA enhanced formation of the TRAIL-death-inducing signaling complex formation in HCC cells. In conclusion, our data suggest that DNA methylation of specific genomic regions maintained by DNMT1 and DNMT3b plays a critical role in survival of HCC cells, and a simultaneous knockdown of both DNMT1 and DNMT3b may be a novel anticancer strategy for the treatment of HCC.

260. PMID 20848733
DNA methylation plays a major role in cancer by silencing tumour suppressor genes. In melanoma, only a discrete number of methylated genes have been identified so far. After the treatment of melanoma cells with a DNA methyltransferase inhibitor and subsequent transcriptomic profiling, we had identified earlier a cohort of melanoma progression-associated genes regulated by methylation. Here, we identified which of these genes are directly methylated in melanoma cell lines and tissues. First, we examined 16 genes by bisulphite sequencing in the WM793 isogenic cell line model series. Five of these genes (CYBA, FABP5, MT1E, TSPY1 and TAC1) displayed increased methylation in several invasive cell lines compared with the parental WM793 cells, indicating their involvement in progression. Next, we analyzed several matched primary/metastatic tumours using methylation-specific PCR, which revealed that MT1E (one of the five genes assessed) was methylated in the largest proportion of tumours. Examination of a larger cohort of samples showed that 1 of 17 (6%) of the benign naevi, 16 of 43 (37%) primary tumours and 6 of 13 (46%) of the metastases displayed MT1E methylation. In addition, ectopic over-expression of MT1E mediated sensitization to cisplatin-induced apoptosis. Overall, these studies suggest that MT1E is a potential tumour suppressor gene, whose loss may promote resistance to apoptosis-inducing therapies.

261. PMID 21980513
DNA methylation plays an important role in carcinogenesis and the reversibility of this epigenetic modification makes it a potential therapeutic target. To date, DNA methyltransferase inhibitors (DNMTi) have not demonstrated clinical efficacy in prostate cancer, with one of the major obstacles being the inability to monitor drug activity during the trial. Given the high frequency and specificity of GSTP1 DNA methylation in prostate cancer, we investigated whether GSTP1 is a useful marker of DNMTi treatment efficacy. LNCaP prostate cancer cells were treated with 5-aza-2'-deoxycytidine (5-aza-CdR) either with a single high dose (5-20 µM), every alternate day (0.1-10 µM) or daily (0.005-2.5 µM). A daily treatment regimen with 5-aza-CdR was optimal, with significant suppression of cell proliferation achieved with doses of 0.05 µM or greater (p<0.0001) and induction of cell death from 0.5 µM (p<0.0001). In contrast, treatment with a single high dose of 20 µM 5-aza-CdR inhibited cell proliferation but was not able to induce cell death. Demethylation of GSTP1 was observed with doses of 5-aza-CdR that induced significant suppression of cell proliferation (= 0.05 µM). Re-expression of the GSTP1 protein was observed only at doses of 5-aza-CdR (= 0.5 µM) associated with induction of cell death. Treatment of LNCaP cells with a more stable DNMTi, Zebularine required at least a 100-fold higher dose (= 50 µM) to inhibit proliferation and was less potent in inducing cell death, which corresponded to a lack of GSTP1 protein re-expression. We have shown that GSTP1 DNA methylation and protein expression status is correlated with DNMTi treatment response in prostate cancer cells. Since GSTP1 is methylated in nearly all prostate cancers, our results warrant its testing as a marker of epigenetic therapy response in future clinical trials. We conclude that the DNA methylation and protein expression status of GSTP1 are good indicators of DNMTi efficacy.

262. PMID 21435086
DNA methylation provides a plausible link between the environment and alterations in gene expression that may lead to disease phenotypes. Lead exposure can change DNA methylation status. Here, we hypothesized that the methylation of the ALAD gene promoter may play an important role in lead toxicity. To determine whether the methylation level of the ALAD promoter is associated with the risk of lead poisoning, we conducted a case-control study of 103 workers from a battery plant and 103 healthy volunteers with matching age and gender distribution. We employed real-time PCR and methylation-specific PCR (MSP) in cell models to determine the relationship between ALAD methylation level and transcription level. We found lead exposure to increase the ALAD gene methylation level and down-regulate ALAD transcription. The difference in methylation frequencies between exposures and controls was statistically significant (p=0.002), and individuals with methylated ALAD gene showed an increased risk of lead poisoning (adjusted OR=3.57, 95% CI, 1.55-8.18). This study suggests that the lead-exposure-induced increases in ALAD methylation may be involved in the mechanism of lead toxicity.

263. PMID 20890295
DNA methylation regulates gene transcription and has been suggested to encode psychopathologies derived from early life stress. We found that methylation regulated the expression of the Crf (also known as Crh) gene and that chronic social stress in adult mice induced long-term demethylation of this genomic region. Demethylation was observed only in the subset of defeated mice that displayed social avoidance and site-specific knockdown of Crf attenuated the stress-induced social avoidance.

264. PMID 21206974
DNA methylation status in the CpG sites of promoter regions in cancer-related genes, such as PTCH, has traditionally been investigated using either dye-terminator sequencing or methylation-specific PCR. We aimed to study the PTCH gene promoter methylation in gynecological cancers, with a method that gives a quantitative measure of the methylation status of the promoter region of the studied gene, and for this purpose, we designed novel Pyrosequencing-based assays. Bisulfite-treated genomic DNA (bsDNA) was amplified by standard PCR and applied to novel Pyrosequencing® assays, in order to measure the methylated fraction (%) at each CpG site of the PTCH gene promoter. We analyzed 22 squamous cell cervical cancer tissue specimens (11 with good and 11 with poor outcomes after radiotherapy) and 5 ovarian cancer tissue specimens matched with 5 normal ovarian tissue specimens. Six optimized PCR protocols which generated 8 Pyrosequencing assays covering 63 CpG sites in the promoter regions 1 and 2 as well as the previously unanalyzed promoter region 3 in the PTCH gene were developed. The 27 tumor tissue specimens and 5 normal tissues did not show any methylation within any of the 63 CpG sites. Our data suggest that methylation of the PTCH promoter is not a high-prevalence feature of squamous cell cervical cancer or ovarian cancer, but Pyrosequencing assays are a good method for studying promoter methylation.

265. PMID 21830905
DNA methylation, a widely used epigenetic mark, has been associated with many tumors. However, few studies have addressed the role of cell-free plasma DNA methylation in discriminating aggressive prostate cancer (PCa) from indolent cases. We conducted a case series and a case-control study among histologically confirmed stage II/III cases and matched controls recruited at Columbia University Medical Center. The aim of this study was to investigate whether plasma DNA methylation levels are appropriate surrogate biomarker of PCa tumor tissue levels and whether these markers are associated with worse clinicopathological tumor characteristics, which correlate with poorer prognosis. Quantitative pyrosequencing was used to detect methylation levels of p16 (CDKN4A), APC, GSTP1, and LINE-1 in 24 pairs of prostate tumor and adjacent tissues, as well as 27 plasma samples of PCa patients and 24 of controls. DNA methylation levels were significantly higher in tumor tissue than in adjacent nontumor tissue for p16 (CDKN4A), GSTP1, and APC; GSTP1 had a higher average percentage methylation in tumor tissue (38.9%) compared with p16 (CDKN4A) (5.9%) and APC (14.5%). GSTP1, p16 (CDKN4A), and APC methylation in tumor tissue was statistically significantly higher for cases with Gleason score =7 compared with those with Gleason score <7 [49.0% vs. 21.9% (p=0.01), 6.6% vs. 4.5% (p=0.04), and 19.1% vs. 7.4% (p=0.02), respectively]. Plasma LINE-1 methylation levels were higher in those with higher Gleason (67.6%) than in those with Gleason's below 7 (64.6%, p=0.03). Significant plasma-tissue correlations were observed for GSTP1 and LINE-1 methylation. These data, although preliminary, suggest that aberrant methylation may be a useful marker to identify PCa patients with clinically aggressive disease.

266. PMID 20428781
DNA methyltransferase (DNMT) 1 and 3 are primarily responsible for abnormal methylation in cancer. Unlike these DNMTs, DNA methyltransferase 3-like (DNMT3L) harbors no conserved catalytic domain, and has been shown to function as a regulatory cofactor for DNA methylation. However, it is unclear whether DNMT3L directly regulates DNA methylation in cancer cells. To address this, we investigated the methylation targets of DNMT3L by conducting methylation microarray trials after the siRNA-induced knockdown. We determined that methylation of 242 out of 1,505 CpG sites was significantly altered by DNMT3L knockdown. Among these 242 CpG sites, 204, 12, and 11 CpG sites were identified as common targets of DNMT 1/3B/3L, 1/3L, and 3B/3L, respectively; this indicates that DNMT3L participates in DNA methylation via cooperation with other DNMTs. However, we also determined that the methylation of 15 CpG sites was significantly altered by DNMT3L knockdown only. As a validation, we confirmed that thymine DNA glycosylase (TDG), an enzyme involved in the base excision repair of mismatched-DNA, was up-regulated in DNMT3L knockdown cells, but neither in DNMT1 nor 3B knockdown cells. Methylation-specific PCR (MSP) also showed that promoter methylation of TDG was decreased in DNMT3L knockdown cells. Interestingly, 5-aza-2'-deoxycitidine (5-aza-dC) re-expressed DNMT3L, leading to down-regulation of TDG. This study is the first to show that DNMT3L exerts a major effect on the transcriptional regulation of a specific target gene, such as TDG, despite the absence of enzymatic activity.

267. PMID 21887466
. Little is known regarding the clinical significance of DNMT expression in gastric cancers. Expression of DNMT1, DNMT3A and DNMT3B in paraffin sections from 54 gastric cancer patients were examined using immunohistochemistry, and their associations with the corresponding clinicopathological parameters were analyzed using the Chi-square test. Overexpression of DNMT1, DNMT3A and DNMT3B in gastric cancer tissues was observed in 35 (64.8%), 38 (70.4%) and 28 (51.9%) of 54 cases, respectively. DNMT1 was localized in the cytoplasm and nuclei of the cancer cells, whereas DNMT3A and DNMT3B were detected only in the cytoplasm. DNMT1 expression was more frequently found in tumors localizing at the cardia or body of the stomach (P=0.048). DNMT3A was associated with TNM stage (P=0.001) and lymph node metastasis (P=0.002). No significant correlation was found between DNMT3B expression and clinicopathological data (P>0.05). The co-expression of DNMT1 and DNMT3A, and of DNMT3A and DNMT3B was more frequently found in tumors localizing at the cardia or body of the stomach (P=0.005 and P=0.009 respectively). Moreover, co-expression of DNMT1 and DNMT3A was significantly associated with lymph node metastasis (P=0.035). DNMTs are overexpressed in gastric cancer, and may play a significant role in the development of aberrant promoter methylation during tumorigenesis.

268. PMID 21805123
DNA methyltransferase 1 (DNMT1) is an emerging target for the treatment of cancer, brain disorders, and other diseases. Currently, there are only a few DNMT1 inhibitors with potential application as therapeutic agents or research tools. 5,5-Methylenedisalicylic acid is a novel scaffold previously identified by virtual screening with detectable although weak inhibitory activity of DNMT1 in biochemical assays. Herein, we report enzyme inhibition of a structurally related compound, trimethylaurintricarboxylic acid (NSC97317) that showed a low micromolar inhibition of DNMT1 (IC(50)?=?4.79 µM). Docking studies of the new inhibitor with the catalytic domain of DNMT1 suggest that NSC97317 can bind into the catalytic site. Interactions with amino acid residues that participate in the mechanism of DNA methylation contribute to the binding recognition. In addition, NSC97317 had a good match with a structure-based pharmacophore model recently developed for inhibitors of DNMT1. Trimethylaurintricarboxylic acid can be a valuable biochemical tool to study DNMT1 inhibition in cancer and other diseases related to DNA methylation.

269. PMID 22133874
DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b-/- lymphomas, but not in Dnmt3b-/- pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b-/- lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.

270. PMID 20196786
DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

271. PMID 20387637
DNA microarray technology comprising NotI-linking clones was used in a large-scale study of genetic and epigenetic changes in colorectal cancer. Analysis of samples from 24 patients revealed methylation, deletions, and amplifications in 137 of 181 NotI clones. For 27 genes/loci, these changes occurred in more than 30% of the tumor samples, suggesting that these genes are involved in the development of colorectal cancer. An analysis of the methylation status of CpG island of the ITGA9 gene/loci by bisulfite sequencing confirmed the NotI microarray data on the gene/loci methylation in colorectal cancer. Aberrations in 19 genes/loci were unknown previously. Their characterization may help ascertain the mechanisms responsible for colorectal cancer development and identify novel diagnostic and prognostic markers.

272. PMID 21979949
DNMT3A is one of two human de novo DNA methyltransferases essential for regulating gene expression through cellular development and differentiation. Here we describe the consequences of single amino acid mutations, including those implicated in the development of acute myeloid leukemia (AML) and myelodysplastic syndromes, at the DNMT3A·DNMT3A homotetramer and DNMT3A·DNMT3L heterotetramer interfaces. A model for the DNMT3A homotetramer was developed via computational interface scanning and tested using light scattering and electrophoretic mobility shift assays. Distinct oligomeric states were functionally characterized using fluorescence anisotropy and steady-state kinetics. Replacement of residues that result in DNMT3A dimers, including those identified in AML patients, show minor changes in methylation activity but lose the capacity for processive catalysis on multisite DNA substrates, unlike the highly processive wild-type enzyme. Our results are consistent with the bimodal distribution of DNA methylation in vivo and the loss of clustered methylation in AML patients. Tetramerization with the known interacting partner DNMT3L rescues processive catalysis, demonstrating that protein binding at the DNMT3A tetramer interface can modulate methylation patterning. Our results provide a structural mechanism for the regulation of DNMT3A activity and epigenetic imprinting.

273. PMID 21516484
Death-associated protein kinase (DAPK) has been suggested as a tumor suppressor gene. A high frequency of DAPK promoter hypermethylation has been noted in head and neck cancers and other solid tumors, and it has been used as a tumor marker in molecular detection strategies. Our aim was to examine DAPK promoter hypermethylation in tissue, blood, and salivary rinse samples of oral precancer patients (OPs) and to explore the potential role in oral carcinogenesis. DAPK hypermethylation was analyzed in 77 OPs and 32 oral squamous cell carcinomas (OSCCs) by real-time quantitative methylation-specific PCR (QMSP). We compared the hypermethylation expression between two groups and analyzed the associations with clinicopathologic parameters. The promoter hypermethylation frequency of DAPK in tissue (46.9%) and blood (52.2%) of OSCCs was significantly higher than those in OPs (19.5%, P = 0.004; 22.4%, P = 0.007, respectively). DAPK promoter hypermethylation expression in blood was correlated with its expression in tissue (r = 0.49, P < 0.000). The OP patients who smoked more than 20 years were found 40.0% tissue DAPK hypermethylation in contrast with 10.7% tissue DAPK hypermethylation in the patients whose smoking duration ?20 years (P = 0.010). Our results suggest that DAPK hypermethylation is an early event in oral carcinogenesis and blood DAPK hypermethylation might be a potential minimal invasive biomarker for OSCC early detection.

274. PMID 20630662
Death-associated protein kinase (DAPK) has pro-apoptotic functions and participates in various apoptotic systems. DAPK acts as a tumor suppressor, and its inactivation by promoter hypermethylation has been frequently observed in various human cancers. As alterations of pro-apoptotic genes might cause instability in the balance of cell-turnover during chronic inflammatory processes, epigenetic silencing of DAPK might be involved in the carcinogenesis of ulcerative colitis-associated carcinoma (UCC). To evaluate the role of DAPK in the inflammation-driven carcinogenesis of ulcerative colitis (UC), we analyzed promoter hypermethylation and protein expression of DAPK using methylation-specific PCR and immunohistochemistry in 43 UCCs and paired UC-background mucosa, as well as in UC-background mucosa of 50 patients without UCC. The frequency of methylation of DAPK in UCCs was low (27.6%) compared to overall non-neoplastic UC-background mucosa (48.3%; p=0.02) and sporadic colorectal carcinoma (57.4%, p=0.019). The difference in the methylation frequency in UC-background mucosa in patients without UCC (54.2%), compared to those with UCC (40.0%), was not significant (p=0.141). Promoter methylation correlated significantly with decreased DAPK protein expression (p<0.001) and severity of inflammatory activity (p=0.024). In unmethylated UC-background mucosa, DAPK protein expression increased with activity of UC-associated inflammation, suggesting a protective role of the pro-apoptotic DAPK during the chronic inflammatory process of UC. Thus, inactivation of DAPK by promoter hypermethylation might be crucial for accumulation of DNA damage in inflamed mucosa of UC, and might therefore contribute to the initiation of the neoplastic process and development of UC-associated carcinoma.

275. PMID 21979297
Death-associated protein kinase (DAPK) is a novel serine/threonine kinase involved in apoptosis and tumor suppression. Promoter methylation is an important mechanism by which tumor suppressor gene transcription is repressed in cancer cells. Although reduced expression and aberrant methylation of DAPK has been reported in various human cancers, including gastric cancer (GC), the results remain discrepant. We aimed to investigate DAPK mRNA and protein expression in primary GC tissues from Chinese patients and establish a possible relationship between the promoter methylation status and the decreased expression of DAPK. The mRNA level, protein expression, and promoter methylation of DAPK were examined, in the cancer tissues and the corresponding, adjacent nontumor tissues of the 62 GC cases, by RT-PCR, western blotting and methylation-specific PCR, respectively. DAPK mRNA and protein expression in GC tissues was significantly reduced compared with corresponding nontumor tissues (P<0.0001). The methylation frequency of the DAPK promoter in primary GC tissues is significantly higher than in the corresponding nontumor tissues (54.8 vs. 17.7%, P<0.0001). Furthermore, DAPK mRNA expression in tissues containing aberrant promoter methylation was significantly reduced compared with GC tissues with unmethylated DAPK promoter (P<0.0001). Moreover, a significant correlation was demonstrated between the TNM stage and the degree of DAPK promoter methylation in primary GCs (P=0.04). DAPK protein and mRNA expression was reduced in GC tissues of Chinese patients. Diminished expression of DAPK was associated with promoter methylation.

276. PMID 22158042
Deletions of chromosomal arms 1p and 19q are frequent in oligodendroglial tumours and linked to radio- and chemotherapy response as well as longer survival. The molecular mechanisms underlying this clinically important association are as yet unknown. Here, we studied the peroxiredoxin 1 (PRDX1) gene at 1p34.1 for promoter methylation and expression in primary gliomas and investigated its role in radio- and chemosensitivity of glioma cells in vitro. In total, we screened primary glioma tissues from 93 patients for methylation of the 5'-CpG island of PRDX1 by sodium bisulfite sequencing. PRDX1 mRNA and protein expression levels were determined in subsets of the tumours by quantitative PCR and western blot analysis, respectively. PRDX1 hypermethylation and reduced expression were frequently detected in oligodendroglial tumours and secondary glioblastomas, but not in primary glioblastomas. In oligodendroglial tumours, both PRDX1 hypermethylation and reduced mRNA expression were significantly associated with 1p/19q-deletion. Stable knockdown of PRDX1 by lentiviral transduction of short-hairpin (sh)RNA constructs significantly increased apoptosis and reduced cell viability of Hs683 glioma cells exposed to ionizing irradiation or temozolomide in vitro. Taken together, our findings indicate that epigenetic silencing of PRDX1 is frequent in 1p/19q-deleted oligodendroglial tumours and likely contributes to radio- and chemosensitivity of these tumours.Oncogene advance online publication, 12 December 2011; doi:10.1038/onc.2011.513.

277. PMID 22150955
Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Genomic imprinting is a particularly attractive example of epigenetic regulation leading to the parental-origin-specific expression of genes. In several ways, the 11p15 imprinted region is an exemplary model for regulation of genomic imprinting. The two imprinted domains are controlled by imprinting control regions (ICRs) which carry opposite germ line imprints and they are regulated by two major mechanisms of imprinting control. Dysregulation of 11p15 genomic imprinting results in two fetal growth disorders [Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes], with opposite growth phenotypes. BWS and SRS result from abnormal imprinting involving either, both domains or only one of them, with ICR1 and ICR2 more often involved in SRS and BWS respectively. DNA methylation defects affecting ICR1 or ICR2 account for approximately 60% of SRS and BWS patients. Recent studies have identified new cis-acting regulatory elements, as well as new trans-acting factors involved in the regulation of 11p15 imprinting, therefore establishing new mechanisms of BWS and SRS. Those studies also showed that, apart of CTCF, other transcription factors, including factors of the pluripotency network, play a crucial role in the regulation of 11p15 genomic imprinting. Those new findings have direct consequences in molecular testing, risk assessment and genetic counseling of BWS and SRS patients.

278. PMID 22677950
Depressed mood in pregnancy has been linked to low birth weight (LBW, < 2,500 g), a risk factor for adult-onset chronic diseases in offspring. We examined maternal depressed mood in relation to birth weight and evaluated the role of DNA methylation at regulatory sequences of imprinted genes in this association. We measured depressed mood among 922 pregnant women using the CES-D scale and obtained birth weight data from hospital records. Using bisulfite pyrosequencing of cord blood DNA from 508 infants, we measured methylation at differentially methylated regions (DMRs) regulating imprinted genes IGF2/H19, DLK1/MEG3, MEST, PEG3, PEG10/SGCE, NNAT and PLAGL1. Multiple regression models were used to examine the relationship between depressed mood, birth weight and DMR methylation levels. Depressed mood was associated with a more that 3-fold higher risk of LBW, after adjusting for delivery mode, parity, education, cigarette smoking, folic acid use and preterm birth. The association may be more pronounced in offspring of black women and female infants. Compared with infants of women without depressed mood, infants born to women with severe depressed mood had a 2.4% higher methylation at the MEG3 DMR. Whereas LBW infants had 1.6% lower methylation at the IGF2 DMR, high birth weight (> 4,500 g) infants had 5.9% higher methylation at the PLAGL1 DMR compared with normal birth weight infants. Our findings confirm that severe maternal depressed mood in pregnancy is associated with LBW, and that MEG3 and IGF2 plasticity may play important roles.

279. PMID 21879731
Deregulation of the c-myc proto-oncogene plays an important role in carcinogenesis. It is, therefore, commonly found to be overexpressed in various types of tumors. Downregulation of c-myc expression assumes great importance in tumor therapy because of its ability to promote and maintain cancer stem cells. Apart from post-transcriptional gene silencing (PTGS), siRNAs have also been shown to cause transcriptional gene silencing (TGS) through epigenetic modifications of a gene locus. This approach can potentially be used to silence genes for longer periods and at a much lesser dosage than PTGS. In this study, we have examined the effect of transfection of a novel siRNA directed against a CpG island encompassing the CT-I(2) region in the P2 promoter of c-myc in U87MG and other cell lines. Transient transfection with this siRNA resulted in c-myc promoter CpG hypermethylation and decreased expression of c-myc (both mRNA and protein) and its downstream targets. A decrease was also observed in the expression of some stemness markers (oct-4 and nanog). Stable transfection also confirmed the promoter CpG hypermethylation and reduced c-myc expression along with reduced cell proliferation and an increase in apoptosis and senescence. A significant decrease in c-myc levels was also observed in three other cancer cell lines after transient transfection under similar conditions. Thus this novel siRNA has the capability of becoming an effective therapeutic tool in malignancies with overexpression of c-myc and may be of particular use in the eradication of recalcitrant cancer stem cells.

280. PMID 22688058
Deregulation of transforming growth factor (TGF)-ß function is a common feature of pancreatic cancer, rendering these cancers unresponsive to TGF-ß-stimulated growth inhibition. Recent findings have supported a primary role for Krüppel-like factor 10 (Klf10) as an important transcription factor involved in mediating TGF-ß1 signaling. The aim of this study was to evaluate the correlation between Klf10 expression and the clinical and pathologic features of pancreatic cancer. Tissue specimens from patients with pancreatic adenocarcinoma were retrospectively collected for immunohistochemical analysis. To demonstrate that Klf10 expression was primarily regulated by methylation status, the Klf10 promoter was examined by methylation-specific PCR using a pancreatic cancer cell line (Panc-1). DNA methyltransferase (DNMT) inhibitor and small-interfering RNA depletion of DNMT genes were used to reverse Klf10 expression in the Panc-1 cells. In parallel, DNMT-1 expression was evaluated in the pancreatic cancer tissue specimens. In 95 pancreatic cancer tissue specimens, Klf10 expression was inversely correlated with pancreatic cancer stage (P = 0.01). Multivariable analysis revealed that, in addition to the presence of distant metastasis at diagnosis (P = 0.001 and 0.001, respectively), Klf10 was another independent prognostic factor related to progression-free and overall survival (P = 0.018 and 0.037, respectively). The loss of Klf10 expression in advanced pancreatic cancer is correlated with altered methylation status, which seems to be regulated by DNMT-1. Our results suggest that Klf10 is a potential clinical predictor for progression of pancreatic cancer.

281. PMID 21779447
Despite the involvement of genetic alterations in neoplastic cell transformation, it is increasingly evident that abnormal epigenetic patterns, such as those affecting DNA methylation and histone posttranslational modifications (PTMs), play an essential role in the early stages of tumor development. This finding, together with the evidence that epigenetic changes are reversible, enabled the development of new antineoplastic therapeutic approaches known as epigenetic therapies. Epigenetic modifications are involved in the control of gene expression, and their aberrant distribution is thought to participate in neoplastic transformation by causing the deregulation of crucial cellular pathways. Epigenetic drugs are able to revert the defective gene expression profile of cancer cells and, consequently, reestablish normal molecular pathways. Considering the emerging interest in epigenetic therapeutics, this review focuses on the approaches affecting DNA methylation, evaluates novel strategies and those already approved for clinical use, and compares their therapeutic potential.

282. PMID 20362674
Detection of aberrant promoter hypermethylation of tumor suppressor genes can be used as a prognostic or predictive marker for carcinogenesis. Since epigenetic modifying agents are FDA approved for treatment of patients with myelodysplastic syndrome, laboratory correlative tools to monitor response to this targeted therapy are important. Methylation specific quantum dot fluorescence resonance energy transfer (MS-qFRET) is a nanotechnology assay that enables the detection of methylation and its changes in a sensitive, quantifiable manner. It utilizes quantum dot-mediated fluorescence resonance energy transfer to achieve highly sensitive detection of DNA methylation. Template DNA is first treated with sodium bisulfite such that unmethylated cytosines are converted to uracil while methylated cytosines remain unconverted. Thereafter, the converted template is amplified using biotinylated methylation-specific primers. Quantum dots, functionalized with streptavidin, serve both as a scaffold to capture amplicons and as a donor for transferring energy to the Cy5 acceptor that is incorporated into the amplicons during PCR. Thus, the status of DNA methylation can be determined according to the level of FRET. In this report, MS-qFRET is validated in cell lines and then used to detect the status of p15(INK4B) methylation in clinical samples from eight patients with acute myeloid leukemia.

283. PMID 22121975
Detection of colorectal cancer at an early stage has been shown to significantly decrease mortality from the disease, while the advent of effective therapies for late-stage colorectal cancer make the detection of colorectal cancer at any stage a critical step in further reducing colorectal cancer mortality. Availability of a blood-based test for colorectal cancer is expected to improve screening compliance in the general population. . Specific detection of colorectal cancer DNA using the Septin 9 methylation biomarker ((m)SEPT9) was demonstrated in multiple studies of plasma from colorectal cancer patients and colonoscopy-verified negative controls. A prospective, population-based trial to determine the clinical performance of (m)SEPT9 in colorectal cancer screening guideline-eligible individuals has recently been completed, with the results to be published in the near future. The potential pitfalls and lessons learned in the multiyear process of developing the (m)SEPT9 biomarker from initial discovery to commercialization are described in this article.

284. PMID 22555376
Diabetes, cardiovascular disease, hypertension, and other disorders have been unified within the metabolic syndrome. Recently, it has been proposed that Alzheimer's disease (AD) and other degenerative, age-related neurological disorders may also be etiologically linked to the metabolic syndrome in a metabolic-cognitive syndrome. We review current evidence in the field for this unification. In addition, we describe how the latent early-life associated regulation (LEARn) model provides specific mechanisms to predict genetic targets for both metabolic disorders, e.g., diabetes, and neurodegenerative disorders, e.g., AD. The LEARn model is based on environmental induction of latent epigenetic misregulation, which develops into disease upon suffering additional environmental insults. We review structural differences between gene sequences that are and are not susceptible to LEARn misregulation. In addition to suggesting research targets such as the IDE and SORCS1 genes, which are implicated in both AD and diabetes, LEARn suggests specific mechanisms for pre-disease remediation, based on nutritional adjustment of aberrant DNA methylation and oxidation. The possibility of a single metabolic-cognitive disorder opens up the possibility of unified preventative treatments that reduce monetary and social costs of disease. LEARn suggests specific, testable pathways within the large theory.

285. PMID 21327941
Diffuse astrocytomas (WHO grade II) typically present as slow-growing tumours showing significant cellular differentiation, but possessing a tendency towards malignant progression. They account for ~10% of all astrocytic tumours, with a peak incidence between 30 and 40 years of age. Median survival is reported as around 6-8 years. Mutations of TP53 and IDH1 have been described as genetic hallmarks, while copy number alterations are also relatively common. However, there is some evidence to suggest that these characteristics may vary with age. Here, we present an integrated clinicopathologic, genomic and transcriptomic analysis suggesting that paediatric and adult tumours are associated with distinct genetic signatures. For example, no childhood tumour showed mutation of IDH1/2 or TP53, virtually no copy number changes were seen, and MGMT methylation was absent. In contrast, adult tumours showed IDH1/2 mutation in 94% and TP53 mutation in 69% of cases, with multiple copy number alterations per case and hypermethylation of MGMT in the majority of tumours. These differences were associated with a worse prognosis in the adult patients. The expression array data also revealed a significant difference in the expression of a number of genes putatively involved in neural stem cell maintenance and CNS development, including DLL3, HES5, BMP2, TIMP1 and BAMBI. Genes involved in DNA replication and the cell cycle were also enriched in the adult tumours, suggesting that their more aggressive behaviour may be due to derivation from a more rapidly dividing, less differentiated cell type.

286. PMID 17981724
Dipeptidyl peptidase IV (DPPIV), a serine protease is expressed by normal melanocytes but not by melanomas, the malignant counterpart. DPPIV is encoded by a gene that contains a 5 CpG island spanning a transcriptional regulatory region. Previously we have demonstrated that DPPIV abrogates growth factor independence and functions as a tumor suppressor gene in melanomas. In this study we show that loss of DPPIV occurs at RNA level and demethylating agent, 5-aza-2'-deoxycytidine (5-AZA-Cdr) treatment of DPPIV negative melanoma cell lines results in increase of DPPIV mRNA, protein, and enzyme activities. By using sodium bisulfite genomic DNA modifications, PCR, and sequencing we confirmed that DPPIV gene promoter is methylated in eight out of ten melanoma cell lines tested. Further more, 5-AZA-Cdr induced increases in DPPIV levels correlated with growth inhibition and apoptosis in melanoma cells. All together these findings suggest that frequent downregulation of DPPIV expression in melanoma can be attributed, in large part, to aberrant promoter hypermethylation and this loss of DPPIV may be a critical event contributing to melanoma development.

287. PMID 22701659
Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3), and opposing histone modification marks (H3K4me3 and H3K27me3) all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

288. PMID 20721556
Disruption of cell cycle control genes, including p16, is known to contribute to the cancerogenesis of multiple myeloma (MM). We investigated the methylation status of p16 and its association with common cytogenetic changes, clinicolaboratory findings, and survival in MM. Methylation-specific polymerase chain reaction was performed in 99 newly diagnosed MM patients using two different sets of primers (p16M1 and p16M2). Four patterns of p16 promoter methylation were observed: (1) concurrent methylation of p16M1 and p16M2 (P1P2), 27.3%; (2) methylation of p16M1 alone (P1N2), 7.1%; (3) methylation of p16M2 alone (N1P2), 26.3%; and (4) no methylation (N1N2), 39.4%. Patients with p16P1P1 showed shorter survivals than those with the other methylation patterns (P1N2, N1P2, or N1N2; median survival, 12 vs. 43 months; P < 0.001), regardless of the treatment protocol. In a multivariate analysis, p16P1P2 was an independent prognostic factor of adverse outcome in MM. According to International Staging System (ISS), the study population could be divided into 21.2% (20/94) for stage I, 22.3% (21/94) for stage II, and 56.4% (53/94) for stage III (P = 0.003). ISS can divide patients into prognostic groups. Of note, in patients older than 60 years, ISS was not reflective of disease stage (P = 0.114). If p16P1P2 sets up as stage 4 of ISS, modified ISS could be a more reliable staging system irrespective of age in Korean MM patients (P = 0.003 and P = 0.004 in patients younger than 60 years and in patients older than 60 years, respectively). Our study suggests the potential use of p16 methylation status in predicting the outcome of MM patients and the applicability of demethylating agents in MM.

289. PMID 21670155
Disruption of the BRCA1 tumor suppressor can be caused not only by inherited mutations in familial cancers but also by BRCA1 gene silencing in sporadic cancers. Hypoxia, a key feature of the tumor microenvironment, has been shown to downregulate BRCA1 at the transcriptional level via repressive E2F4/p130 complexes. Here we showed that hypoxia also drives epigenetic modification of the BRCA1 promoter, with decreased H3K4 methylation as a key repressive modification produced by the lysine-specific histone demethylase LSD1. We also observed increased H3K9 methylation coupled with decreased H3K9 acetylation. Similar modifications were seen in the RAD51 promoter, which is also downregulated by hypoxia, whereas exactly opposite changes were seen in the promoter of the hypoxia-inducible gene VEGF. In cells containing the BRCA1 promoter driving a selectable HPRT gene, long-term silencing of the promoter was observed following exposure to hypoxic stress. Clones with silenced BRCA1 promoters were detected at frequencies of 2% or more following hypoxia, but at less than 6 × 10(-5) without hypoxia. The silenced clones showed decreased H3K4 methylation and decreased H3K9 acetylation in the BRCA1 promoters, consistent with the acute effects of hypoxic stress. Hypoxia-induced BRCA1 promoter silencing persisted in subsequent normoxic conditions but could be reversed by treatment with a histone deacetylase (HDAC) inhibitor but not with a DNA methylation inhibitor. Interestingly, treatment of cells with inhibitors of poly(ADP-ribose) polymerase (PARP) can cause short-term repression of BRCA1 expression, but such treatment does not produce H3K4 or H3K9 histone modification or BRCA1 promoter silencing. These results suggest that hypoxia is a driving force for long-term silencing of BRCA1, thereby promoting genome instability and tumor progression.

290. PMID 18356147
Disruption of the Wnt pathway is thought to be crucial in the development of human cancer. Pathway inhibitory members of the secreted frizzled-related protein (SFRP) family were found to be downregulated due to epigenetic inactivation in various malignancies. To date, only SFRP1 has been studied in human breast cancer and we questioned whether other SFRP genes may be implicated in the pathogenesis of this disease as well. An initial real-time polymerase chain reaction analysis of SFRP5 expression in normal human tissues (n = 9) revealed weak expression in most tissues, including breast. Malignant mammary cell lines showed further SFRP5 expression loss in five of six cases. Consistently, in matched pairs of primary breast tumor/normal breast tissue, this downregulation (>5-fold) could be confirmed (n = 8/13; 62%). We identified promoter methylation as the predominant mechanism of SFRP5 gene silencing since SFRP5 promoter methylation correlated significantly with loss of SFRP5 expression in cell lines (P = 0.040) and primary tumors (P = 0.003). Moreover, cancerous cell lines re-expressed SFRP5 messenger RNA following treatment with DNA-demethylating drugs. Of 168 primary breast carcinomas, 73% harbored a methylated SFRP5 promoter, whereas 27% were unaffected by epigenetic alteration. Most interestingly, SFRP5 methylation was associated with reduced overall survival (OS) (P = 0.045) and was an independent risk factor affecting OS in a multivariate Cox proportional hazard model (hazard ratio): 4.55; 95% confidence interval: 1.01-20.56; P = 0.049). In conclusion, SFRP5 is a target of epigenetic inactivation in human breast cancer, supporting the hypothesis of its role as tumor suppressor gene. SFRP5 methylation may be a novel DNA-based biomarker potentially useful in clinical breast cancer management.

291. PMID 20848731
Disseminated melanoma is an aggressive disease with fatal outcome. Better understanding of the underlying biology is needed to find effective treatment. We applied microarray-based comparative genomic hybridization, gene expression and CpG island methylation analysis of primary tumors and multiple metastases from five melanoma patients with the aim of analyzing the molecular patterns of melanoma progression. Epigenetic profiling showed that the multiple metastases after a single primary melanoma share similar methylation patterns for many genes, although differences in methylation between the lesions were evident for several genes, example, PTEN, TFAP2C, and RARB. In addition, DNA copy number and global gene expression profiles of tumors from individual patients were highly similar, confirming common origin of metastases. Some of the identified genomic aberrations, for example, gain of chromosome 6p and loss of chromosomes 6q and 10, persisted during progression, indicating early changes highly important for melanoma development. Homozygous deletions at 3p26.1 and 6q23.2-q23.3 appeared in two consecutive metastases originating from the same primary tumor, respectively, in a mutually exclusive manner that provides evidence for two genetically different subclones. However, in another case, the similarity of the copy number aberrations in subsequent metastatic lesions suggests sequential metastatic development through the clonal evolution. These data are further corroborated by a switch in CDH1 and CDH2 expression between metastases from the same patient. In conclusion, our results provide evidence for different models of metastatic progression in melanoma.

292. PMID 22318685
Down-regulation of the liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and up-regulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Here we found Mat1A:Mat2A switch and low SAM levels, associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation in Mat2A promoter of fast-growing HCC of F344 rats, genetically susceptible to hepatocarcinogenesis. In HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occurred. The highest MAT1A promoter hypermethylation and MAT2A promoter hypomethylation occurred in human HCC with poorer prognosis. Furthermore, levels of AUF1 protein, which destabilizes MAT1A messenger RNA (mRNA), Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and Mat2A-HuR ribonucleoprotein sharply increased in F344 and human HCC, and underwent low/no increase in BN HCC. In human HCC, Mat1A:MAT2A expression and MATI/III:MATII activity ratios correlated negatively with cell proliferation and genomic instability, and positively with apoptosis and DNA methylation. Noticeably, the MATI/III:MATII ratio strongly predicted patient survival length. Forced MAT1A overexpression in HepG2 and HuH7 cells led to a rise in the SAM level, decreased cell proliferation, increased apoptosis, down-regulation of Cyclin D1, E2F1, IKK, NF-?B, and antiapoptotic BCL2 and XIAP genes, and up-regulation of BAX and BAK proapoptotic genes. In conclusion, we found for the first time a post-transcriptional regulation of MAT1A and MAT2A by AUF1 and HuR in HCC. Low MATI/III:MATII ratio is a prognostic marker that contributes to determine a phenotype susceptible to HCC and patients' survival. Conclusion: Interference with cell cycle progression and I-kappa B kinase (IKK)/nuclear factor kappa B (NF-?B) signaling contributes to the antiproliferative and proapoptotic effect of high SAM levels in HCC. (HEPATOLOGY 2012).

293. PMID 21911457
Drug resistance is a major cause of failure in cancer chemotherapy. Therefore, identification and combined use of adjuvant compounds that can overcome drug resistance may improve the efficacy of cancer therapy. We screened extracts of Verticillium species-infected mushrooms for antitumor compounds and identified the compound Verticillin A as an inducer of hepatoma cell apoptosis in vitro and an inhibitor of tumor xenograft growth in vivo. Verticillin A exhibited a potent apoptosis-sensitizing activity in human colon carcinoma cells exposed to TRAIL or Fas in vitro. Furthermore, Verticillin A effectively sensitized metastatic human colon carcinoma xenograft to TRAIL-mediated growth inhibition in vivo. At the molecular level, we observed that Verticillin A induces cell-cycle arrest in the G2 phase of the cell cycle in human colon carcinoma cells, markedly upregulating BNIP3 in both hepatoma and colon carcinoma cells. Notably, silencing BNIP3 decreased the sensitivity of tumor cells to Verticillin A-induced apoptosis in the absence or presence of TRAIL. We found that the BNIP3 promoter is methylated in both human hepatoma and colon carcinoma cells and tumor specimens. Verticillin A upregulated the expression of a panel of genes known to be regulated at the level of DNA methylation, in support of the concept that Verticillin A may act by demethylating the BNIP3 promoter to upregulate BNIP3 expression. Taken together, our findings identify Verticillin A as a potent apoptosis sensitizer with great promise for further development as an adjuvant agent to overcome drug resistance in human cancer therapy.

294. PMID 21901246
Drug resistance remains a major obstacle to successful cancer treatment. Genome-wide comprehensive analysis identified a novel gene, glucocorticoid-induced protein-coding gene (DEXI), which was frequently methylated in colorectal (CRC; 36 of 73 patients; 49%) and gastric (28 of 89 patients; 31%) cancer patients. Here, we show that DEXI methylation is implicated in mechanisms facilitating resistance to camptothecin (CPT) via inhibition of apoptosis. Silencing of DEXI by siRNA significantly reduced CPT-induced apoptosis in a fibroblast cell line (1/6-fold; p<0.01) originally expressing endogenous DEXI. Restored expression of DEXI by 5-aza-2'-deoxycytidine (DAC) significantly enhanced susceptibility to CPT (3-fold; p<0.01) in a colon cancer cell line originally suppressing endogenous DEXI due to almost complete methylation. Exogenous induction of DEXI confirmed that DEXI per se contributed to enhanced susceptibility to CPT. 5-Fluorouracil (5-FU) did not exhibit these synergistic effects by DEXI restoration. Further, to estimate the clinical usefulness of DEXI methylation status as biomarker for drug resistance to irinotecan (CPT-11), 16 CRC patients who underwent FOLFIRI (5-FU + CPT-11) therapy because they were refractory to FOLFOX (5-FU + oxaliplatin) were analyzed. Significantly poor response and outcome were observed in 8 CRC patients harboring DEXI methylation. In 8 CRC patients harboring DEXI methylation disease control rate, progression-free survival and overall survival were 25.0%, 2 and 11.8 months, respectively, whereas in 8 CRC patients without DEXI methylation they were 62.5%, 5.3 and 15 months, respectively (p<0.01). These significant differences were not observed in patients undergoing treatment with FOLFOX. In conclusion, silencing of DEXI leads to resistance, but restored expression enhances susceptibility to CPT in vitro and DEXI methylation results in poor response and outcome to CPT-11-based chemotherapy, suggesting that DEXI is a potent therapeutic target and an epigenetic biomarker for the selection of patients more likely to benefit from CPT-11-based chemotherapy.

295. PMID 22363344
During the first trimester of pregnancy fetal trophoblasts invade the maternal decidua, thereby remodeling the maternal spiral arteries. This process of trophoblast invasion is very similar to cancer cell invasion, with multiple signaling pathways shared between the two. Pregnancy-related diseases, e.g., pre-eclampsia, and cancer metastasis start with a decrease or increase in cellular invasion, respectively. Here, we investigate if first trimester placental explants can be used to identify epigenetic factors associated with changes in cellular invasion and their potential use as biomarkers. We show that the outgrowth potential of first trimester explants significantly correlates with promoter methylation of PRKCDBP and MMP2, two genes known to be differentially methylated in both placenta and cancer. The increase in methylation percentage of placental cells coincides with an increase in invasion potential. Subsequently, as a non-invasive marker must be detectable in blood, plasma samples of pregnant and non-pregnant women were analyzed. The MMP2 promoter showed high methylation levels in non-pregnant plasma samples, which decreased in pregnant plasma samples which also contain placental DNA. The decrease in methylated plasma DNA during pregnancy is most likely due to the fractional increase in unmethylated placental DNA. This suggests that the level of unmethylated DNA has the potential to be used as an invasion marker, where higher levels of unmethylated DNA indicate a lower invasion potential of trophoblasts. These proof of principle data provide evidence that human first trimester placental explants are an excellent ex vivo model system to identify (epigenetic) factors and thus potential biomarkers associated with changes in cellular invasion, e.g., to detect pregnancy-related diseases or cancer metastasis. To identify novel biomarkers the next step is to correlate naturally occurring variation in invasion potential to changes in (epigenetic) factors by genome-wide approaches such as massively parallel sequencing.

296. PMID 18381459
Dysfunction in enzymes involved in one-carbon (1-C) metabolism can lead to increased chromosomal strand breaking and abnormal methylation patterns, which are both associated with cancer risk. Availability of 1-C units may modify risk. We investigated the association of single-nucleotide polymorphisms (SNP) in 21 genes in the 1-C transfer pathway among 829 Caucasian cases with primary epithelial ovarian cancer and 941 frequency-matched unaffected controls enrolled at Mayo Clinic (Rochester, MN) and Duke University (Durham, NC) and examined risk modification by multivitamin supplement use. Multivariable-adjusted SNP-specific logistic regression and haplotype analyses were done for 180 SNPs and false positive report probabilities (FPRP) were calculated. Each copy of the minor allele in SHMT1 intron 5 A>G (rs9909104) was associated with epithelial ovarian cancer [odds ratio (OR), 1.2; 95% confidence interval (95% CI), 1.0-1.4; P trend = 0.02; FPRP = 0.16] and a 5-SNP SHMT1 haplotype was associated with decreased risk (P = 0.01; FPRP = 0.09). Three SNPs in DNMT3A were associated with risk among multivitamin supplement users: 3' untranslated region (UTR) C>G (rs13420827: OR, 0.8; 95% CI, 0.6-1.0; P interaction = 0.006; FPRP = 0.54), intron 6 G>A (rs11887120: OR, 0.8; 95% CI, 0.7-1.0; P interaction = 0.007; FPRP = 0.57), and intron 22 A>T (rs11695471: OR, 1.2; 95% CI, 1.0-1.5; P interaction = 0.01; FPRP = 0.66). These data extend previous findings from other cancers of a role for SHMT1 in ovarian cancer, and provide evidence that SNPs in methylation and DNA synthesis reactions are associated with risk of ovarian cancer. Interventions with modifiable factors such as multivitamin intake may reduce risk.

297. PMID 19268989
Dysregulation of MAL (myelin and lymphocyte protein) has been implicated in several malignancies including esophageal, ovarian, and cervical cancers. The MAL protein functions in apical transport in polarized epithelial cells; therefore, its disruption may lead to loss of organized polarity characteristic of most solid malignancies. Bisulfite sequencing of the MAL promoter CpG island revealed hypermethylation in breast cancer cell lines and 69% of primary tumors analyzed compared with normal breast epithelial cells. Differential methylation between normal and cancer DNA was confined to the proximal promoter region. In a subset of breast cancer cell lines including T47D and MCF7 cells, promoter methylation correlated with transcriptional silencing that was reversible with the methylation inhibitor 5-aza-2'-deoxycytidine. In addition, expression of MAL reduced motility and resulted in a redistribution of lipid raft components in MCF10A cells. MAL protein expression measured by immunohistochemistry revealed no significant correlation with clinicopathologic features. However, in patients who did not receive adjuvant chemotherapy, reduced MAL expression was a significant predictive factor for disease-free survival. These data implicate MAL as a commonly altered gene in breast cancer with implications for response to chemotherapy.

298. PMID 20375073
E-cadherin, as a tumor suppressor, plays an important role for intercellular adhesion involved in metastasis. Although K-Ras is highly expressed in a variety of cancers, the regulation of E-cadherin expression by K-Ras in association with DNA methylation and cell metastasis has not been completely clarified. In this study, E-cadherin expression was repressed in 267B1/K-Ras human epithelial prostate cancer cells stably overexpressing K-Ras, resulting from hypermethylation of E-cadherin promoter as evidenced by methylation-specific polymerase chain reaction (PCR), bisulfite sequencing, real-time reverse transcription-PCR and western blot analysis. The increased level of DNA methyltransferase (DNMT) 3b in 267B1/K-Ras cells was reduced by small interfering RNA-mediated knockdown of k-ras, whereas DNMT1 and DNMT3a did not change regardless of K-Ras or 5-aza-2'-deoxycytidine (5'-AzaC) treatment. Furthermore, binding of DNMT3b to E-cadherin promoter was increased in 267B1/K-Ras cells but was reduced by 5'-AzaC, as revealed by chromatin immunoprecipitation assay, which was in agreement with cell aggregation and invasive mobilization of the cells. Hence, our data suggest that increased binding of DNMT3b to E-cadherin promoter region by K-Ras cause promoter hypermethylation for reduced expression of E-cadherin, leading to the decreased cell aggregation and increased metastasis of human prostate cancer cells overexpressing K-Ras.

299. PMID 20126984
EPHA7 is a member of the EPHA family of receptor kinases, among which several members are known to be involved in human lung carcinogenesis. We report here a novel spliced variant, the so-called secreted form of EPHA7, recently reported in malignant lymphoma, in human lung cancer cell lines and primary lung cancer. In contrast to the EPHA7 down-regulation in colorectal cancer by promoter hypermethylation, EPHA7 is expressed at a substantial level in most human lung cancers and the secreted form of EPHA7 mRNA was found in a fraction of primary lung cancer tissues, lung cancer cell lines, and immortalized bronchogenic epithelial cell lines. Interestingly, the secreted form of EPHA7 message was predominantly detected in non-adeno type lung carcinoma. The mechanistic role of the secreted form of EPHA7 in human lung carcinogenesis is not clear, but the presence of this form could distinctly exclude adenocarcinoma of the lung from the other categories, i.e., squamous cell carcinoma, small cell carcinoma and large cell carcinoma, which have strong association with smoking. This is the first study to detect the secreted form of EPHA7 in human epithelial tissues. EPHA7 warrants further investigation to determine its possible involvement in smoking related lung carcinogenesis.

300. PMID 18635238
Early detection of colorectal cancer is a decisive step in the successful and complete cure of the disease. Epigenetic markers, in particular, those based on aberrant DNA methylation, can be used to diagnose cancer. B melanoma antigens (BAGE) are a family of genes and truncated genes located in the heterochromatic regions of several human chromosomes. Our previous work showed that BAGE loci (i.e., genes and truncated genes) were hypermethylated in normal tissues and hypomethylated in 98% of human cancers. In the present study, we analyzed DNA methylation of the BAGE loci in 54 colon cancers and in neighboring histopathologic normal tissue samples. Using a combined bisulfite restriction assay, we showed that BAGE loci were hypomethylated in 81% of carcinoma samples. Colon cancer could be diagnosed with 94% specificity, 83% sensitivity, and 89% accuracy. No correlation was found between DNA methylation of BAGE loci and age, gender of patients, nor with the tumor stage or site. Based on the hypothesis that during neoplastic transformation, hypomethylation occurs in juxtacentromeric CpG islands, we suggest that other genes located in the heterochromatic compartment should be tested. These new markers enrich the list of currently studied epigenetic alterations in colon cancer and could be associated with hypermethylation markers to develop reliable diagnostic tests.

301. PMID 21537840
Early-onset breast cancer is one of the most common malignancies and causes of death among young women, and its incidence is increasing. In the present study, we aimed to investigate the epigenetic modifications of the breast cancer type 1 susceptibility gene (BRCA1) in breast tissues and blood cells derived from women with breast cancer and women without breast cancer. BRCA1 promoter methylation was examined by methylation-specific PCR in 47 breast cancer tissues and in peripheral blood cells derived from 7 breast cancer patients and 73 healthy women. Subsequently, the methylation status of the BRCA1 promoter was confirmed and analyzed at high resolution by sodium bisulfite genomic sequencing. . A strong association (p-value, 0.0038) was found between BRCA1 methylation and young age (= 40 years) at diagnosis. The BRCA1 promoter was also methylated in blood cells from 8 women without breast cancer (10.9%) and 2 breast cancer patients (28%). The methylation pattern of the BRCA1 promoter CpG island was similar in the blood cells from healthy women as well as in women with breast cancer. Moreover, we report for the first time, the observation of methylation-related mutations leading to the formation of non-CpG methylation, as well as the formation of novel methylated CpG sites in the 5' regulatory region of the BRCA1 gene in the peripheral blood cells from cancer-free women. These results suggest the possible implication of BRCA1 promoter methylation in the early onset of breast cancer and propose the use of this epigenetic modification as a powerful molecular marker for detecting women potentially predisposed to cancer.

302. PMID 21225631
Ectopic expression of CDX2, a caudal-related homeobox protein, is known to be associated with the development of intestinal metaplasia in the stomach and gastric carcinogenesis. Previously, we reported that DNA methylation was partly responsible for CDX2 silencing in gastric cancer (GC). However, the mechanism underlying the aberrant expression of CDX2 during malignant transformation remained unclear. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators. To elucidate the role of miRNAs in CDX2 downregulation in GC cells, putative miRNAs, such as miR-9, were computationally predicted. After exogenous pre-miR-9 precursor transfection, the luciferase activity of a reporter vector containing a part of the 3'-UTR of CDX2 was downregulated in HEK-293T cells. The inverse correlation between the miR-9 and CDX2 protein levels was demonstrated in GC cell lines. By means of miR-9 overexpression and knockdown techniques, the expression levels of the CDX2 protein and downstream target genes (p21, MUC2 and TFF3) were responsively altered in MKN45 and NUGC-3 cells. Transfection of an anti-miR-9 molecule significantly inhibited cell growth by promoting G(1) cell cycle arrest in MKN45 cells similarly to the effect of CDX2 overexpression. Moreover, examination of the miR-9 levels in primary GC tissues revealed that the amounts of miR-9 in the CDX2-negative group were significantly higher than those in the CDX2-positive group (p = 0.004). Therefore, miR-9 might repress CDX2 expression via the binding site in the 3'-UTR, resulting in the promotion of cell proliferation in GCs.

303. PMID 21466784
Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

304. PMID 19268989
Endometriosis is a common and chronic disease characterized by persistent pelvic pain and infertility. Estradiol is essential for growth and inflammation in endometriotic tissue. The complete cascade of steroidogenic proteins/enzymes including aromatase is present in endometriosis leading to de novo estradiol synthesis. PGE(2) induces the expression of the genes that encode these enzymes. Upon PGE(2) treatment, coordinate recruitment of the nuclear receptor SF-1 to the promoters of these steroidogenic genes is the key event for estradiol synthesis. SF-1 is the key factor determining that an endometriotic cell will respond to PGE(2) by increased estradiol formation. The presence of SF-1 in endometriosis and its absence in endometrium is determined primarily by the methylation of its promoter. The key steroidogenic enzyme in endometriosis is aromatase encoded by a single gene because its inhibition blocks all estradiol biosynthesis. Aromatase inhibitors diminish endometriotic implants and associated pain refractory to existing treatments in affected women.

305. PMID 21896932
Endometriosis, a common, benign, estrogen-dependent disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial tissue that is found primarily in the peritoneum, ovaries and rectovaginal septum. Recently, endometriosis has been alternatively described as an immune disease, a genetic disease and a disease caused by exposure to environmental factors, in addition to its usual description as a hormonal disease. In addition, accumulating evidence suggests that various epigenetic aberrations play definite roles in the pathogenesis of endometriosis. Epigenetic alterations reported to date in endometriosis include the genomic DNA methylation of progesterone receptor-B, E-cadherin, homeobox A10, estrogen receptor-?, steroidogenic factor-1 and aromatase. Aberrant expression of DNA methyltransferases, which attach a methyl group to the 5-carbon position of cytosine bases in the CpG island of the promoter region and silence the corresponding gene expression, has also been demonstrated in endometriosis. This review summarizes the recent studies on the aberrant DNA methylation status and aberrant expression of DNA methyltransferases, which regulate DNA methylation, in endometriosis. We also discuss the recent information on the diagnostic and therapeutic implications of epigenetic alterations occurring in endometriosis.

306. PMID 21651673
Endometriosis, a common, benign, estrogen-dependent disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial tissue that is found primarily in the peritoneum, ovaries and rectovaginal septum. Recently, endometriosis has been alternatively described as an immune disease, a genetic disease and a disease caused by exposure to environmental factors, in addition to its usual description as a hormonal disease. In addition, accumulating evidence suggests that various epigenetic aberrations play definite roles in the pathogenesis of endometriosis. Epigenetic alterations reported to date in endometriosis include the genomic DNA methylation of progesterone receptor-B, E-cadherin, homeobox A10, estrogen receptor-ß, steroidogenic factor-1 and aromatase. Aberrant expression of DNA methyltransferases, which attach a methyl group to the 5-carbon position of cytosine bases in the CpG island of the promoter region and silence the corresponding gene expression, has also been demonstrated in endometriosis. This review summarizes the recent studies on the aberrant DNA methylation status and aberrant expression of DNA methyltransferases, which regulate DNA methylation, in endometriosis. We also discuss the recent information on the diagnostic and therapeutic implications of epigenetic alterations occurring in endometriosis.

307. PMID 21782343
Endothelin-1 is a vasoactive peptide that activates both the endothelin A (ET(A)) and endothelin B (ET(B)) receptors, and is secreted in high concentrations in many different cancer environments. Although ET(A) receptor activation has an established nociceptive effect in cancer models, the role of ET(B) receptors on cancer pain is controversial. EDNRB, the gene encoding the ET(B) receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ET(B) mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ET(B) receptor re-expression attenuates cancer-induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer-induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain-producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.

308. PMID 20686362
Enhancer of Zeste Homologue 2 (EZH2), a specific histone 3 lysine 27 (H3K27) methyltransferase, plays a critical role in tumorigenesis and cancer progression through epigenetic gene silencing and chromatin remodeling. However, the role of EZH2 in chemotherapy resistance is unknown. In this study, we found that EZH2 was overexpressed in cisplatin-resistant ovarian cancer cells compared with cisplatin-sensitive cells. Knockdown of EZH2 by RNA interference (RNAi) resensitized drug-resistant ovarian cancer A2780/DDP cells to cisplatin and decreased the level of H3K27 trimethylation (H3K27me3). Moreover, EZH2 downregulation suppressed cell proliferation and caused G2/M cell cycle arrest in A2780/DDP cells. Loss of EZH2 also enhanced sensibility of tumor xenografts to cisplatin and inhibited tumor growth in vivo. Our results indicate that EZH2 is essential for chemotherapy resistance in cisplatin-resistant cancer cells in vitro and in vivo, which is probably through H3K27 methylation as well as regulation of cell proliferation. EZH2 could be a potential novel epigenetic target to overcome drug resistance.

309. PMID 20146887
Epidemiological studies have shown that folate deficiency increases the risk of cancer by affecting DNA repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate metabolism. In this study, it was hypothesized that MTHFR (C677T and A1298C) polymorphisms would be associated with bladder cancer and also with hypermethylation of the promoter of the Ras association domain family 1A (RASSF1A) gene. This hospital-based, case-control study of 312 bladder cancer patients and 325 cancer-free controls found that individuals carrying the MTHFR 677TT genotype had a 2.00-fold increased risk of bladder cancer compared with those carrying the 677CC genotype. None of the MTHFR A1298C polymorphisms alone were associated with bladder cancer, but the combined haplotype 677TT/1298AA was associated with a 2.27-fold increased risk compared with haplotype 677CC/1298AA. There was no association between MTHFR gene variants and methylation status of the RASSF1A gene in the 45 bladder cancer patients in whom this was studied. It is concluded that the MTHFR 677TT genotype and the TTAA haplotype may increase the risk of bladder cancer.

310. PMID 20811686
Epigenetic DNA methylations plays an important role in oral carcinogenesis. The soluble frizzled receptor protein (SFRP) family together with WIF-1 and DKK-3 encodes antagonists of the WNT pathway. Silencing of these genes leads to constitutive WNT signalling. Because aberrant expression of beta-catenin might be associated with the epigenetic inactivation of WNT inhibitors, we analyzed, in a collection of primary OSCC with matched normal oral mucosa, the methylation status of a complete panel of genes, SFRP-1, SFRP-2, SFRP-4, SFRP-5, WIF-1, DKK-3, that are involved directly and indirectly in WNT pathway, in order to demonstrate WNT-pathway activation in the absence of beta-catenin and/or APC/Axin mutations during oral carcinogenesis. Methylation-specific PCR (MSP) was performed to study inactivation of SFRP-1, SFRP-2, SFRP-4, SFRP-5, WIF-1, DKK-3 genes in 37 cases of paraffin embedded oral cancer. This study showed that the methylation is an important epigenetic alteration in oral cancer. In particular, SFRP-2, SFRP-4, SFRP-5, WIF-1, DKK-3 revealed methylation status of their promoter in OSCC, whereas SFRP-1 showed demethylation in cancer. Fisher's exact test revealed statistically significant results (p<0.05) for all genes. The Wald test confirmed the statistically significant association between SFRP2-4-5 gene methylation and OSCC (p<0.05). SFRP-1 was also characterized by a different statistically significant epigenetic behaviour, because of it was demethylated in cancer (p<0.05). Statistical regression test showed high levels of sensitivity, specificity and accuracy for SFRP genes, while WIF-1 and DKK-3 have reportedly high specificity, moderate accuracy but low sensitivity. This study suggests that a cause of catenin delocalization in oral cancer could be due to WNT pathway activation, by epigenetic alterations of SFRP, WIF-1 and DKK-3 genes.

311. PMID 22573467
Epigenetic aberrations are frequent in prostate cancer and could be useful for detection and prognostication. However, the underlying mechanisms and the sequence of these changes remain to be fully elucidated. The tumor suppressor gene RARRES1 (TIG1) is frequently hypermethylated in several cancers. Having noted changes in the expression of its paralogous neighbor gene LXN at 3q25.32, we used pyrosequencing to quantify DNA methylation at both genes and determine its relationship with clinicopathological parameters in 86 prostate cancer tissues from radical prostatectomies. Methylation at LXN and RARRES1 was highly correlated. Increasing methylation was associated with worse clinical features, including biochemical recurrence, and decreased expression of both genes. However, expression of three neighboring genes was unaffected. Intriguingly, RARRES1 methylation was influenced by the genotype of the rs6441224 single-nucleotide polymorphism (SNP) in its promoter. We found that this SNP is located within an ETS-family-response element and that the more strongly methylated allele confers lower activity in reporter assays. Concomitant methylation of RARRES1 and LXN in cancerous tissues was also detected in prostate cancer cell lines and was shown to be associated with repressive histone modifications and transcriptional downregulation. In conclusion, we found that genotype-associated hypermethylation of the ETS-family target gene RARRES1 influences methylation at its neighbor gene LXN and could be useful as a prognostic biomarker.

312. PMID 22359287
Epigenetic alterations contribute significantly to the development and progression of prostate cancer, the most prevalent malignant tumor in males of Western industrialized countries. Here, we review recent research on DNA methylation alterations in this cancer type. Hypermethylation of several genes including GSTP1 is well known to occur in a consistent and apparently coordinate fashion during the transition from intraepithelial neoplasia to frank carcinoma. These hypermethylation events have shown promise as biomarkers for detection of prostate carcinoma. Many other individual genes have been shown to undergo hypermethylation, which is typically associated with diminished expression. These investigations indicate additional candidates for biomarkers; in particular, hypermethylation events associated with progression can be employed to identify more aggressive cases. In addition, some of genes silenced by aberrant methylation in prostate have been shown to exhibit properties of tumor suppressors, revealing insights into mechanisms of carcinogenesis. Whereas most studies in the past have used candidate gene approaches, new techniques allowing genome-wide screening for altered methylation are increasingly employed in prostate cancer research and have already yielded encouraging results.

313. PMID 21725204
Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p< 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 remained unchanged in two patient sample. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment.

314. PMID 22080730
Epigenetic association studies have demonstrated differential promoter methylation in the core circadian genes in breast cancer cases relative to cancer-free controls. The current pilot study aims to investigate whether epigenetic changes affecting breast cancer risk could be caused by circadian disruption through exposure to light at night. Archived DNA samples extracted from whole blood of 117 female subjects from a prospective cohort conducted in Denmark were included in this study. A polymerase chain reaction (PCR)-based method was used for detection of gene-promoter methylation, whereas genome-wide methylation analysis was performed using the Illumina Infinium Methylation Chip. Long-term shiftwork resulted in the same promoter hypomethylation of CLOCK and hypermethylation of CRY2, as was previously observed in breast cancer case-control studies. Genome-wide methylation analysis further discovered widespread methylation alterations in shiftworkers, including changes in many methylation- and cancer-relevant genes. Pathway analysis of the genes with altered methylation patterns revealed several cancer-related pathways. One of the top three networks generated was designated as "DNA replication, recombination, and repair, gene expression, behavior" with ESR1 (estrogen receptor a) featured most prominently in the network, underscoring the potential breast cancer relevance of the genes differentially methylated in long-term shiftworkers. These results, although exploratory, demonstrate the first evidence of the cancer-relevant epigenetic effects of night shiftwork, which warrant further investigation. Considering there are millions of shiftworkers worldwide, understanding the effects of this exposure may lead to novel strategies for cancer prevention and new policies regulating shiftwork.

315. PMID 20587527
Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic mice are bred with Emicro-Myc transgenic mice, which model aggressive B-cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Emicro-Myc animals. Emicro-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared with Emicro-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the redistribution of DNA methylation characterizing virtually every human tumor.

316. PMID 21710692
Epigenetic changes are considered to be a frequent event during tumour development. Hypermethylation of promoter CpG islands represents an alternative mechanism to inactivate tumour suppressor genes, DNA repair genes, cell cycle regulators and transcription factors. In search of epigenetic events related to progression, we used MS-MLPA (ME-0002-B1, MRC-Holland, Amsterdam, The Netherlands) to compare the methylation status of 25 breast cancer-related genes between laser-microdissected ductal carcinoma in situ (DCIS) and adjacent invasive ductal cancer (IDC) lesions in 33 breast cancer patients. Using absolute methylation percentages or, alternatively, a 15% cut-off for methylation, promoter methylation in DCIS and IDC was not significantly different for any of the genes studied. Aberrant methylation in at least 50% of both the DCIS and adjacent IDC lesions was observed for PAX6, BRCA2, PAX5, WT1, CDH13 and MSH6. Methylation of MSH6, however, was also frequent in normal breast tissue. In contrast, CDKN2A, CHFR, PYCARD and one of the two analysed RB1 CpG loci were rarely (<5%) methylated in both lesions. CDKN2A and GSTP1 showed significantly (p < 0.002) higher mean methylation levels in increasing grades (I, II, III) of DCIS (1% versus 4% versus 7% for CDKN2A and 6% versus 26% versus 28% for GSTP1). The mean number of methylated genes per sample increased with increasing grades of DCIS (p = 0.014) and IDC (p = 0.109). In contrast to the observations in DCIS, none of the analysed genes showed significantly higher methylation levels with increasing grades of IDC. In conclusion, there were no differences in promoter methylation between DCIS and IDC in the 25 analysed genes, suggesting that DCIS, at the epigenetic level, is as advanced as IDC. Promoter hypermethylation of PAX6, BRCA2, PAX5, WT1, CDH13 and MSH6 seems to be a frequent early event in breast cancer and methylation levels of GSTP1 (and CDKN2A, although still low) seem to increase with increasing DCIS grade.

317. PMID 21531005
Epigenetic changes including histone methylation, histone acetylation, and DNA methylation are thought to play important roles in the onset and progression of cancer in numerous tumor types. Recent evidence shows that dysregulated epigenetic modifications are as significant as genetic mutations and can act as oncogenic driver lesions causing autonomous growth of cancer cells. Here, we investigated the role of lysine-specific demethylase 1 in mesenchymal tumors. Lysine-specific demethylase 1 is the first discovered histone lysine demethylase and can demethylate both H3K4me2/1 and H3K9me2/1. By analyzing a total of 468 tumors, we describe for the first time high lysine-specific demethylase 1 expression in several highly malignant sarcomas, including synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors and malignant peripheral nerve sheath tumors. Among the intermediate tumors only solitary fibrous tumors were found to be highly lysine-specific demethylase 1 positive, whereas lysine-specific demethylase 1 expression was low or absent in benign tumors. Lysine-specific demethylase 1 inhibition with small molecule inhibitors resulted in growth inhibition of synovial sarcoma cells in vitro and an increase in global H3K4me2 methylation. Sarcomas continue to remain a clinical challenge and therefore the identification of both diagnostic markers and novel drug targets for the development of new therapeutic options are needed. Our results suggest that dysregulation of lysine-specific demethylase 1 is associated with highly malignant sarcomas proposing them as molecular tumor markers as well as targets for the treatment of these tumor types.

318. PMID 22206871
Epigenetic changes of genomic DNA are involved in the development and progression of many cancers. Aberrant methylation of CpG islands in the promoter regions of certain tumor-suppressor genes (TSG) is frequently observed in cancer cells. Protocadherin 10 (PCDH10), a member of the cadherin superfamily, is a recently identified putative TSG. PCDH10 is frequently silenced in many solid tumors. However, the role of PCDH10 in gastric cancer is largely unknown. In this study, we examined the expression and methylation status of PCDH10 in gastric cancer cells and tissues by real time PCR and methylation-specific PCR (MSP), and then investigated the biological function of PCDH10. We found that the expression of PCDH10 was markedly reduced in gastric cancer cells and tissues. The reduced expression correlated with hypermethylation of this gene in its promoter region, as demonstrated by MSP and bisulfite genomic sequencing (BGS) analysis. In addition, pharmacological demethylation using 5-Aza restored the expression of PCDH10 in gastric cancer cells. Over-expression of PCDH10 in gastric cancer cells suppressed cell proliferation and migration, but did not cause marked apoptosis. Over-expression of PCDH10 also suppressed growth of xenograft tumors in nude mice. Thus, PCDH10 functions as a TSG in gastric cancer, and might be a useful target for cancer therapy.

319. PMID 21077739
Epigenetic changes play a role in the pathogenesis of myeloid malignancies, and hypomethylating agents have shown efficacy in these diseases. We studied the apoptotic effect, genome-wide methylation, and gene expression profiles in HL60 cells following 5-aza-2'-deoxycytidine (decitabine; DAC) treatment, using microarray technologies. Decitabine treatment resulted in a decrease in global DNA methylation, corresponding to 4876 probeset IDs with significantly reduced methylation levels, while the expression of 2583 IDs was modified. The integrated analysis identified 160 genes demethylated and up-regulated by decitabine, mainly including development and differentiation pathway genes. Gene targets of Polycomb group protein regulation were overrepresented in this group. Apoptosis was induced by decitabine, and apoptosis-specific PCR arrays more precisely indicated decitabine-induced up-regulation of 13 apoptosis-related genes, in particular DAP-kinase 1 and BCL2L10. Correspondingly, in primary patient samples, BCL2L10 was hypermethylated in 45% of AML, 43% of therapy-related myeloid neoplasms, 12% of MDS, and in none of the controls. In conclusion, decitabine induces global demethylation and gene expression, in particular of Polycomb target genes involved in development and differentiation pathways. The apoptotic gene BCL2L10 is a frequent target for aberrant promoter methylation in patients with acute leukemia, de novo and therapy-related.

320. PMID 20620207
Epigenetic changes refer to heritable changes that may modulate gene expression without affecting DNA sequence. DNA methylation is one such heritable epigenetic change, which is causally associated with the transcription regulation of many genes in the mammalian genome. Altered DNA methylation has been implicated in a wide variety of human diseases including cancer. Understanding the regulation of DNA methylation is likely to improve the ability to diagnose and treat these diseases. With the advent of high-throughput RNA interference (RNAi) screens, answering epigenetic questions on a genomic scale is now possible. Two recent genome-wide RNAi screens have addressed the regulation of DNA methylation in cancer, leading to the identification of the regulators of epigenetic silencing by oncogenic RAS and how epigenetic silencing of the tumor suppressor RASSF1A is maintained. These RNAi screens have much wider applications, since similar screens can now be adapted to identify the mechanism of silencing of any human disease-associated gene that is epigenetically regulated. In this review, we discuss two recent genome-wide RNAi screens for epigenetic regulators and explore potential applications in understanding DNA methylation and gene expression regulation in mammalian cells. We also discuss some of the key unanswered questions in the field of DNA methylation and suggest genome-wide RNAi screens designed to answer them.

321. PMID 22169324
Epigenetic changes, including abnormal DNA methylation, have been identified to play significant roles in tumor initiation and progression. Recently, mutations of DNMT3A were identified in acute myeloid leukemia (AML), which possibly caused changes in DNA methylation, and indicated a poor prognosis. Sequencing analysis showed that most of the mutations were single nucleotide variations, including a hotspot Arg882. DNMT3A mutations were detected in about 20% AML patients, and closely associated with the age over 60, the M(4), M(5) subtypes and intermediate-risk cytogenetics. Others showed that these alterations also present in myelodysplastic syndrome (MDS) and primary myelofibrosis (PMF) prior to development of the obvious leukemia, indicating that these mutations might contribute to leukemogenesis. However, its prognostic value of minimal residual disease and role of therapeutic targets are still unclear, focusing on a large cohort of AML patients will solve these issues. In this review, the achievement in studying DNMT3A gene mutation are summarized, and the latest research progress is briefly discussed.

322. PMID 22248274
Epigenetic de novo methylation of CpG islands is an important event in malignant transformation. Two genes are frequently methylated: cyclin-dependent kinase inhibitor 2B (CDKN2B) and cyclin-dependent kinase inhibitor 2A (CDKN2A). In our study methylation of these genes was studied in 63 patients with myelodysplastic syndromes (MDS), 2 with myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and 13 with acute myeloid leukemia (AML). Five patients were monitored during 5-azacytidine treatment. Twenty-six healthy donors were tested in a?control group. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) method with all associated techniques was used for detection. Aberrant methylation was present in the CDKN2A gene in 38% and in the CDKN2B gene in 77% of the patients in MDS group. The level of methylation was higher in the group of AML patients - 77% in CDKN2A gene and 100% in CDKN2B gene. In MDS patients, an aberrant methylation was associated with a?tendency to disease progression towards more advanced forms according to the World Health Organization (WHO) classification and the International Prognostic Scoring System (IPSS). Significant differences in methylation level were observed between early and advanced forms of MDS in CDKN2B gene (P value < 0.05) but not for CDKN2A gene. The trend of methylation in patients treated with azacitidine was analyzed in CDKN2B gene and correlated with the course of the disease. Increased methylation was connected with disease progression. We concluded that the methylation level of CDKN2B gene might be used as a?marker of leukemic transformation in MDS. Our study indicates the role of hypermethylation as an important event in the progression of MDS to AML. Keywords: DNA Methylation, CDKN2A, CDKN2B, 5-azacytidine, MS-MLPA.

323. PMID 22679109
Epigenetic disruption of tumor suppressor genes (TSGs) is frequently involved in tumorigenesis. We identified a novel 19q13 KRAB domain-containing zinc finger protein, ZNF545/ZFP82, broadly expressed in normal tissues but downregulated in multiple tumor cell lines. The ZNF545 promoter contains a CpG island which is frequently methylated in cell lines. The transcriptional silencing of ZNF545 could be reversed by pharmacologic or genetic demethylation, indicating direct epigenetic silencing. ZNF545 was also frequently methylated in multiple primary tumors of nasopharyngeal, esophageal, lung, gastric, colon, and breast, but rarely in normal epithelial tissues and paired normal tissues. ZNF545 is located in the nucleus and mainly sequestered in nucleoli, functioning as a repressor. ZNF545 is able to repress NF-?B and AP-1 signaling pathways, while ectopic expression of ZNF545 in silenced tumor cells significantly inhibited their growth and induced apoptosis. Functional studies showed that ZNF545 was involved in ribosome biogenesis through inhibiting the activity of rDNA promoter and decreasing cellular protein translation efficiency. Thus, we identified ZNF545 as a novel tumor suppressor inducing tumor cell apoptosis, repressing ribosome biogenesis and target gene transcription. The tumor-specific methylation of ZNF545 could be an epigenetic biomarker for cancer diagnosis.

324. PMID 22367183
Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.

325. PMID 21896932
Epigenetic events have emerged as key mechanisms in the regulation of critical biological processes and in the development of a wide variety of human malignancies, including gastric cancer (GC), however precise gene targets of aberrant DNA methylation in GC remain largely unknown. Here, we have combined pyrosequencing-based quantitative analysis of DNA methylation in 98 GC cases and 64 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and in cancer tissue and non-tumorigenic adjacent tissue of an independent series of GC samples. A panel of 10 cancer-associated genes (CHRNA3, DOK1, MGMT, RASSF1A, p14ARF, CDH1, MLH1, ALDH2, GNMT and MTHFR) and LINE-1 repetitive elements were included in the analysis and their association with clinicopathological characteristics (sex, age at diagnosis, anatomical sub-site, histological sub-type) was examined. Three out of the 10 genes analyzed exhibited a marked hypermethylation, whereas two genes (ALDH2 and MTHFR) showed significant hypomethylation, in gastric tumors. Among differentially methylated genes, we identified new genes (CHRNA3 and DOK1) as targets of aberrant hypermethylation in GC, suggesting that epigenetic deregulation of these genes and their corresponding cellular pathways may promote the development and progression of GC. We also found that global demethylation of tumor cell genomes occurs in GC, consistent with the notion that abnormal hypermethylation of specific genes occurs concomitantly with genome-wide hypomethylation. Age and gender had no significant influence on methylation states, but an association was observed between LINE-1 and MLH1 methylation levels with histological sub-type and anatomical sub-site. This study identifies aberrant methylation patters in specific genes in GC thus providing information that could be exploited as novel biomarkers in clinics and molecular epidemiology of GC.

326. PMID 21435086
Epigenetic inactivation due to aberrant promoter methylation is a key process in breast tumorigenesis. Murine models for human breast cancer have been established for nearly every important human oncogene or tumor suppressor gene. Mouse-to-human comparative gene expression and cytogenetic profiling have been widely investigated for these models; however, little is known about the conservation of epigenetic alterations during tumorigenesis. To determine if this key process in human breast tumorigenesis is also mirrored in a murine breast cancer model, we mapped cytosine methylation changes in primary adenocarcinomas and paired lung metastases derived from the polyomavirus middle T antigen mouse model. Global changes in methylcytosine levels were observed in all tumors when compared to the normal mammary gland. Aberrant methylation and associated gene silencing was observed for Hoxa7, a gene that is differentially methylated in human breast tumors, and Gata2, a novel candidate gene. Analysis of HOXA7 and GATA2 expression in a bank of human primary tumors confirms that the expression of these genes is also reduced in human breast cancer. In addition, HOXA7 hypermethylation is observed in breast cancer tissues when compared to adjacent tumor-free tissue. Based on these studies, we present a model in which comparative epigenetic techniques can be used to identify novel candidate genes important for human breast tumorigenesis, in both primary and metastatic tumors.

327. PMID 20193695
Epigenetic inactivation of genes by DNA hypermethylation plays an important role in carcinogenesis. An in vitro model of human breast epithelial cell transformation was used to study epigenetic changes induced by estradiol during the neoplastic process. Different stages of tumor initiation and progression are represented in this model being MCF-10F the normal stage; trMCF cells, the transformed stage; bsMCF cells, the invasive stage and, caMCF cells, the tumor stage. Global methylation studies by restriction landmark genomic scanning (RLGS) showed an increased DNA methylation during the in the invasive and tumor stages. Expression studies showed that NRG1 (neuregulin 1), CSS3 (chondroitin sulfate synthase 3) and SNIP (SNAP-25-interacting protein) were downregulated in the invasive and tumor cells. The transformed cells showed low expression of STXBP6 (amysin) compared to the parental cells MCF-10F. The treatment of these cells with the demethylating agent 5-aza-dC alone or in combination with the histone deacetylase inhibitor trichostatin increased the expression of NRG1, STXBP6, CSS3 and SNIP confirming that DNA methylation plays an important role in the regulation of the expression of these genes. The NRG1 exon 1 has a region located between -136 and +79 (considering +1, the translational initiation site) rich in CpG sites that was analyzed by methylation specific PCR (MSP). NRG1 exon 1 showed progressive changes in the methylation pattern associated with the progression of the neoplastic process in this model; NRG1 exon 1 was unmethylated in MCF-10F and trMCF cells, becoming hypermethylated in the invasive (bsMCF) and tumor (caMCF) stages. Studies of human breast tissue samples showed that NRG1 exon 1 was partially methylated in 14 out of 17 (82.4%) invasive carcinomas although it was unmethylated in normal tissues (8 out of 10 normal breast tissue samples). Furthermore, NRG1 exon 1 was partially methylated in 9 out of 14 (64.3%) morphologically normal tissue samples adjacent to invasive carcinomas.

328. PMID 22099875
Epigenetic inactivation of protein tyrosine phosphatase receptor-type O (PTPRO), a new member of the PTP family, has been described in several forms of cancer. We evaluated PTPRO promoter hypermethylation as a potential biomarker in esophageal squamous cell carcinoma (ESCC). This alteration was observed in 27 (75%) of 36 primary tumors and correlated significantly with depth of invasion (T-stage, P = 0.013). Among matched peripheral blood samples from ESCC patients, 13 (36.1%) of 36 exhibited detectable methylated PTPRO in plasma, while 15 (41.7%) of 36 had this abnormality in buffy coat. No methylated PTPRO was observed in normal peripheral blood samples from 10 healthy individuals. In addition, demethylation by 5-aza-dC treatment led to gene reactivation in PTPRO-methylated and -silenced ESCC cell lines. To our knowledge, this is the first report of methylated PTPRO as a noninvasive tumor biomarker in peripheral blood. These findings suggest that hypermethylated PTPRO occurs frequently in ESCC. Further, detection in peripheral blood of ESCC patients suggests potential clinical application for noninvasive diagnosis and disease monitoring.

329. PMID 21723418
Epigenetic inactivation of tumor-suppressor genes, often in association with aberrant DNA methylation of CpG islands in the promoter region of these genes, is a key factor in tumorigenesis. CCAAT/enhancer binding protein alpha (CEBPA) methylation is a favorable prognostic biomarker for acute myeloid leukemia; however, rather than the complete methylation observed in inherited disorders, CEBPA methylation is heterogeneous. In this study, we established an algorithm called the "methylation index," deduced from high-resolution melting profiles, which includes Tm shifting (?Tm) and Tm width ratio (fold of width), to evaluate the heterogeneous methylation status. The methylation index was highly correlated with the exact methylation levels detected by using the MassARRAY method (R(2) = 0.80; P < 0.001). Within-run reproducibility for the methylation index was 0.9% as the coefficient of variation, and between-run reproducibility was 2.6%. It was determined that with a cutoff methylation index of 1.412, the best measures of sensitivity and specificity could be obtained (97.14% and 95.89%, respectively) to discern low or high CEBPA methylation status. This novel algorithm for calculation of the methylation index from high-resolution melting profiles for CEBPA methylation is compatible with measurement of the methylation level as assayed using MassARRAY and could be a simple and efficient screening method for determination of CEBPA methylation status in acute myeloid leukemia.

330. PMID 21896932
Epigenetic inactivation of tumour suppressor microRNAs has been implicated in carcinogenesis. . Promoter of MIR203 was unmethylated in normal controls but homozygously methylated in 25% MM cell lines. Treatment with 5-Aza-2'-deoxycytidine led to promoter demethylation and MIR203 re-expression. Cyclic AMP responsive element binding protein 1 (CREB1) mRNA was predicted as a MIR203 direct target. Luciferase activity was reduced in constructs carrying wild-type CREB1 3'UTR upon MIR203 expression but not in those carrying mutant CREB1 3'UTR. Moreover, restoration of MIR203 led to downregulation of CREB1 protein and inhibition of myeloma cell proliferation. In primary samples, MIR203 methylation occurred in 25·0% MGUS, 23·6% diagnostic MM, and 21·1% relapsed MM samples. In conclusion, MIR203 methylation is disease-specific with reversible gene silencing in MM. MIR203 is a tumour suppressor microRNA inhibiting cellular proliferation by targeting CREB1 mRNA in MM. Comparable occurrence of MIR203 methylation in MGUS and MM at diagnosis or relapse suggested that MIR203 methylation may be an early event in myelomagenesis instead of being acquired during disease progression.

331. PMID 22197621
Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-a-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17ß-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 µmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.

332. PMID 18319075
Epigenetic misregulation is consistent with various non-Mendelian features of schizophrenia and bipolar disorder. To date, however, few studies have investigated the role of DNA methylation in major psychosis, and none have taken a genome-wide epigenomic approach. In this study we used CpG-island microarrays to identify DNA-methylation changes in the frontal cortex and germline associated with schizophrenia and bipolar disorder. In the frontal cortex we find evidence for psychosis-associated DNA-methylation differences in numerous loci, including several involved in glutamatergic and GABAergic neurotransmission, brain development, and other processes functionally linked to disease etiology. DNA-methylation changes in a significant proportion of these loci correspond to reported changes of steady-state mRNA level associated with psychosis. Gene-ontology analysis highlighted epigenetic disruption to loci involved in mitochondrial function, brain development, and stress response. Methylome network analysis uncovered decreased epigenetic modularity in both the brain and the germline of affected individuals, suggesting that systemic epigenetic dysfunction may be associated with major psychosis. We also report evidence for a strong correlation between DNA methylation in the MEK1 gene promoter region and lifetime antipsychotic use in schizophrenia patients. Finally, we observe that frontal-cortex DNA methylation in the BDNF gene is correlated with genotype at a nearby nonsynonymous SNP that has been previously associated with major psychosis. Our data are consistent with the epigenetic theory of major psychosis and suggest that DNA-methylation changes are important to the etiology of schizophrenia and bipolar disorder.

333. PMID 22330137
Epigenetic modifications are a driving force in carcinogenesis. However, their role in cancer metastasis remains poorly understood. The present study investigated the role of DNA methylation in the cervical cancer metastasis. Here, we report evidence of the overexpression of DNA methyltransferases 3B (DNMT3B) in invasive cervical cancer and of the inhibition of metastasis by DNMT3B interference. Using methyl-DNA immunoprecipitation coupled with microarray analysis, we found that the protein tyrosine phosphatase receptor type R (PTPRR) was silenced through DNMT3B-mediated methylation in the cervical cancer. PTPRR inhibited p44/42 MAPK signaling, the expression of the transcription factor AP1, human papillomavirus (HPV) oncogenes E6/E7 and DNMTs. The methylation status of PTPRR increased in cervical scrapings (n=358) in accordance with disease severity, especially in invasive cancer. Methylation of the PTPRR promoter has an important role in the metastasis and may be a biomarker of invasive cervical cancer.Oncogene advance online publication, 13 February 2012; doi:10.1038/onc.2012.29.

334. PMID 22045684
Epigenetic modifications such as methylation of CpG islands in tumor-suppressor gene promoter regions have been associated with tumor development in many human cancers. Using methylation specific multiplex ligation-dependent probe amplification method, we analyzed the methylation status of 35 different genes in 16 neuroblastoma (NB) cell lines and 50 NB tumor samples (NBs), and investigated whether specific hypermethylation was associated with biological and/or clinical parameters. Among the genes found hypermethylated, the effect of GSTP1 hypermethylation on mRNA and protein expression was also explored. The median number of hypermethylated genes was higher in cell lines compared to NBs (5.5 vs. 2). For eight genes, aberrant methylation of CpG-islands in NB was not (ESR1, PAX5, WT1, CADM1, MSH6, and CDKN2B) or very rarely (CDH13 and GSTP1) reported in literature. GSTP1 was found hypermethylated in 44% of the NB cell lines and in 33% of the stage 4-11qLOH -non MYCN-amplified high risk NBs. Hypermethylation was correlated with reduced mRNA and protein expression. In the whole NBs cohort, GSTP1 hypermethylation was less frequently detected (8%), but found to be associated with lower event-free (EFS) and overall survival. Hypermethylation of GSTP1 showed also association with lower EFS in high risk subgroups as stage 4 and older patients (?547 days). Our results suggest that, as in several adult cancers, aberrant methylation of GSTP1 may contribute to the carcinogenetic process in NB and could be potentially used as a new marker leading to define an ultra-high risk subgroup.

335. PMID 22701735
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.

336. PMID 21102416
Epigenetic silencing of cancer-related genes by promoter methylation is a frequent event in sporadic colorectal cancer. The CpG island methylator phenotype (CIMP+), in which discrete genes throughout the genome are simultaneously methylated, and long-range epigenetic silencing, whereby multiple genes within contiguous chromosomal regions are methylated, have been described in subsets of colorectal cancer. We previously reported the concurrent methylation of the mismatch repair gene MLH1 with a cluster of flanking genes in chromosome region 3p22 in sporadic colorectal carcinoma exhibiting microsatellite instability and the BRAF V600E mutation. Herein, we aimed to determine whether methylation of MLH1 and neighbouring 3p22 genes, singly or concomitantly, correlate with the germline c.-93G>A SNP within the MLH1 promoter, CIMP+ and other clinicopathological and molecular features of the tumours. By studying a cohort of 946 sporadic colorectal cancer cases, we show a strong association between concordant methylation of = 3 of five 3p22 genes with CIMP+ and the BRAF V600E mutation (P<0.001). These associations were independent of microsatellite instability, as concomitant methylation of 3p22 genes other than MLH1 was found in microsatellite stable cancers. These findings show that long-range epigenetic silencing across 3p22 occurs in the context of CIMP+ and the BRAF V600E mutation, and only gives rise to microsatellite instability when this process encompasses MLH1. Furthermore, the strong relationship between long-range epigenetic silencing of 3p22 and CIMP+ provides further evidence that these two purportedly distinct epigenetic phenotypes represent a single entity with a common aetiology. Low-level methylation of MLH1 and flanking 3p22 genes, as well as the BRAF V600E mutation, were detected in the apparently normal colonic mucosa of a small number of cases whose tumours showed a similar molecular profile, suggesting that these concurring genetic and epigenetic events can occur as a field defect in neoplastic development.

337. PMID 20711807
Epigenetic silencing of retinoic acid receptor-beta2 (RARbeta2) and estrogen receptor-alpha (ERalpha) expressions have been revealed to be important in the development of approaches for diagnosis and therapy of breast cancer. We aimed to explore the correlation of some potential factors with the hypermethylation status of RARbeta2 and ERalpha genes among Iranian breast cancer patients. The hypermethylation status was investigated in 137 dissected tissues from primary breast cancer patients through methylation-specific PCR. Overall, the methylation frequencies of RARbeta2 and ERalpha genes were observed in 36.5 and 51.1% of participants, respectively. The hypermethylated RARbeta2 was associated with younger age at diagnosis and negative family history of breast cancer. The hypermethylation of ERalpha was correlated positively with smoking, duration of estradiol exposure, ER-negativity in tumors and body mass index (at 5 years ago). The plasma levels of folate and vitamin B(12) were inversely related to the hypermethylation status of ERalpha, after controlling for covariates. The risk of ERalpha hypermethylation was increased with high plasma level of total homocysteine. In conclusion, our data provide new insights into the possible effect of some lifestyle-related factors on the aberrant methylation drift of ERalpha and RARbeta2 genes in breast cancer.

338. PMID 19268989
Epigenetic silencing of sFRP genes has been shown to lead to constitutive activation of the canonical Wnt-signaling pathway. The first description of deregulated Wnt-signaling activation in a hematological malignancy was reported in chronic myeloid leukemia (CML). . Of the 48 CML patients 41 were shown to be unmethylated, 6 patients hemi-methylated and 1 patient fully methylated at the sFRP1 promoter. Albeit observed infrequently in chronic phase CML, sFRP1 promoter methylation correlated with primary cytogenetic resistance to imatinib mesylate. sFRP1 promoter methylation may indicate a genetically more unstable form of disease resistant to therapy and provide a key biological difference in therapy resistant patients, in addition to a possible mechanism for the observed activation of canonical Wnt signaling in CML.

339. PMID 20353273
Epigenetic silencing of secreted frizzled-related protein (SFRP) genes, antagonists of the WNT pathway, contributes to the pathogenesis of several cancers including non-small cell lung cancer (NSCLC). We hypothesize that methylation analysis of SFRPs family could improve their use as a panel of biomarkers for diagnosing and staging of NSCLC in China. The expression of four SFRP members (SFRP1, 2, 4, and 5) in NSCLC samples was screened by RT-PCR and quantitative real-time PCR. Only SFRP1 was significantly downregulated in NSCLC, as compared to adjacent normal tissues and benign pulmonary disease tissues (P=0.006). Promoter hypermethylation of SFRP1 was found in 32.1% (25/78) NSCLC specimens and was closely correlated with loss of expression, besides SFRP1 hypermethylation was associated with lymph metastasis (P=0.039) and disease progression within one year (P=0.027). Furthermore, methylated SFRP1 was detected in 28.2% (22/78) of plasma samples from NSCLC patients while only 4% (2/50) in cancer-free controls, and the concordance of SFRP1 methylation status in tumor tissues and corresponding plasmas was satisfactory (P <0.001). In conclusion, epigenetic inactivation of SFRP1 is a common event contributing to lung carcinogenesis and maybe used as a potential biomarker for NSCLC in Chinese population.

340. PMID 20652362
Epigenetic silencing of the MGMT gene through promoter methylation correlates with improved survival in Glioblastoma Multiforme (GBM) patients receiving concurrent chemoradiotherapy. Although the clinical benefit is primarily seen in patients with methylated MGMT promoter, some unmethylated patients also respond to Temozolomide. One possible explanation may be intratumoral heterogeneity. This study was designed to assess the methylation status of the MGMT promoter in different areas of GBM and determine if methylation status varied depending on the fixation technique (paraffin-embedding versus fresh frozen) used to store tissue. Using intraoperative navigation, biopsies were obtained from three distinct regions: the enhancing outer area, the non-enhancing inner core, and an area immediately outside the enhancing region. Only patients with GBM were included for evaluation and analysis. Samples taken from each area were divided with half stored by flash freezing and the other half stored using paraffin fixation. Methylation Specific-PCR (MS-PCR) was used for analysis of MGMT promoter methylation. Thirteen patients were included. Ten were male with a median age of 62 years. In each patient, samples were taken from the enhancing rim and the necrotic centre. However, it was not considered safe or feasible to obtain samples from the area immediately adjacent to the enhancing tumor rim in one case. All patients were homogeneous for methylation status throughout their tumor and tissue taken adjacent to it when frozen tissue was used. However, four patients had discrepancies in the MGMT promoter status between the frozen and paraffin-embedded blocks and one patient was not homogeneous within the tumor when paraffin-embedded tissue was used. MGMT promoter methylation status was homogeneous in all GBM tumors. Our observation that methylation status varied depending if the DNA was extracted from paraffin-embedded versus frozen tissue is concerning. Although the reason for this is unclear, we postulate that the timing from resection to fixation or the process of fixation itself may potentially alter methylation status in paraffin-embedded tumors.

341. PMID 21435086
Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care.

342. PMID 20686820
Epigenetic silencing of the O(6)-methylguanine-DNA-methyltransferase (MGMT) gene by promoter methylation is correlated with improved progression-free survival (PFS) and overall survival (OS) in adult patients with newly diagnosed glioblastoma multiforme (GBM) who receive alkylating agents. The aim of this study is to determine the correlation between MGMT and survival in elderly patients with GBM treated with radiotherapy (RT) and temozolomide (TMZ). Eighty-three patients aged 70 years or older with histologically confirmed GBM treated with RT plus TMZ between February 2005 and September 2009 were investigated in this study. The methylation status of the MGMT promoter was determined by polymerase chain reaction analysis. Median PFS and OS were 7.5 and 12.8 months, respectively. The MGMT promoter was methylated in 42 patients (50.6%) and unmethylated in 41 patients (49.4%). Median OS was 15.3 months in methylated patients and 10.2 months in unmethylated patients (P = 0.0001). Median PFS was 10.5 months in methylated tumors and 5.5 months in unmethylated tumors (P = 0.0001). On multivariate analysis MGMT methylation status emerged as the strongest independent prognostic factor for OS and PFS (P = 0.004 and P = 0.005, respectively). The results of the present study suggest that MGMT methylation status might be an important prognostic factor associated with better OS and PFS in elderly patients with GBM treated with RT and TMZ.

343. PMID 19268989
Epigenetic silencing of tumor suppressor genes is a new focus of investigation in the generation and proliferation of carcinomas. Secreted protein acidic and rich in cysteine (SPARC) is reportedly detrimental to the growth of ovarian cancer cells and has been shown to be epigenetically silenced in several cancers. We hypothesized that SPARC is downregulated in ovarian cancer through aberrant promoter hypermethylation. To that end, we analyzed SPARC expression in ovarian cancer cell lines and investigated the methylation status of the Sparc promoter using methylation-specific polymerase chain reaction. Our results show that SPARC mRNA expression is decreased in three (33%) and absent in four (44%) of the nine ovarian cancer cell lines studied, which correlated with hypermethylation of the Sparc promoter. Treatment with the demethylating agent 5-aza-2'-deoxycytidine rescued SPARC mRNA and protein expression. Addition of exogenous SPARC, as well as ectopic expression by an adenoviral vector, resulted in decreased proliferation of ovarian cancer cell lines. Investigation of primary tumors revealed that the Sparc promoter is methylated in 68% of primary ovarian tumors and that the levels of SPARC protein decrease as the disease progresses from low to high grade. Lastly, de novo methylation of Sparc promoter was shown to be mediated by DNA methyltransferase 3a. These results implicate Sparc promoter methylation as an important factor in the genesis and survival of ovarian carcinomas and provide new insights into the potential use of SPARC as a novel biomarker and/or treatment modality for this disease.

344. PMID 21896932
Epigenetic studies of DNA and histone modifications represent a new and important activity in molecular investigations of human disease. Our previous epigenome-wide scan identified numerous DNA methylation differences in post-mortem brain samples from individuals affected with major psychosis. . Sodium bisulfite conversion coupled with pyrosequencing was used to interrogate 28 CpGs spanning ?700?bp region of HCG9 in 1402 DNA samples from post-mortem brains, peripheral blood cells and germline (sperm) of bipolar disease patients and controls. The analysis of nearly 40?000 CpGs revealed complex relationships between DNA methylation and age, medication as well as DNA sequence variation (rs1128306). Two brain tissue cohorts exhibited lower DNA methylation in bipolar disease patients compared with controls at an extended HCG9 region (P=0.026). Logistic regression modeling of BPD as a function of rs1128306 genotype, age and DNA methylation uncovered an independent effect of DNA methylation in white blood cells (odds ratio (OR)=1.08, P=0.0077) and the overall sample (OR=1.24, P=0.0011). Receiver operating characteristic curve A prime statistics estimated a 69-72% probability of correct BPD prediction from a case vs control pool. Finally, sperm DNA demonstrated a significant association (P=0.018) with BPD at one of the regions demonstrating epigenetic changes in the post-mortem brain and peripheral blood samples. The consistent multi-tissue epigenetic differences at HCG9 argue for a causal association with BPD.Molecular Psychiatry advance online publication, 7 June 2011; doi:10.1038/mp.2011.64.

345. PMID 20609913
Epigenetics is referred to as heritable changes in gene expression but not encoded in the DNA sequence itself which occurs during posttranslational modifications in DNA and histones. These epigenetic modifications include histone acetylation, deacetylation, and methylation. Acetylation by histone acetyltransferases (HATs) of specific lysine residues on the N-terminal tail of core histones results in uncoiling of the DNA and increased accessibility to transcription factor binding. In contrast, histone deacetylation by histone deacetylases (HDACs) represses gene transcription by promoting DNA winding thereby limiting access to transcription factors. Reactive oxygen species (ROS) are involved in cellular redox alterations, such as amplification of proinflammatory and immunological responses, signaling pathways, activation of transcription factors (NF-kappaB and AP-1), chromatin remodeling (histone acetylation and deacetylation), histone/protein deacetylation by sirtuin 1 (SIRT1) and gene expression. The glutathione redox status plays an important role in protein modifications and signaling pathways, including effects on redox-sensitive transcription factors. Protein S-glutathiolation and mixed disulfide formation as candidate mechanisms for protein regulation during intracellular oxidative stress have gained a renewed impetus in view of their involvements in redox regulation of signaling proteins. A variety of methods are applied to study the epigenetic processes to elucidate the molecular mysteries underlying epigenetic inheritance. These include chromatin immunoprecipitation (ChIP), which is a powerful tool to study protein-DNA interaction and is widely used in many fields to study protein associated with chromatin, such as histone and its isoforms and transcription factors, across a defined DNA domain. Here, we describe some of the contemporary methods used to study oxidative stress and thiol redox signaling involved in epigenetic (histone acetylation, deacetylation, and methylation) and chromatin remodeling (HAT, HDAC, SIRT1) research.

346. PMID 21159317
Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF?B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the cell without initiating chromosomal instability.

347. PMID 21156726
Epithelial ovarian cancer is the leading cause of death among gynecologic malignancies. Diagnosis usually occurs after metastatic spread, largely reflecting vague symptoms of early disease combined with lack of an effective screening strategy. Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. To elucidate the biological and clinical relevance of DNA methylation in ovarian cancer, we conducted expression microarray analysis of 39 cell lines and 17 primary culture specimens grown in the presence or absence of DNA methyltransferase (DNMT) inhibitors. Two parameters, induction of expression and standard deviation among untreated samples, identified 378 candidate methylated genes, many relevant to TGF-beta signaling. We analyzed 43 of these genes and they all exhibited methylation. Treatment with DNMT inhibitors increased TGF-beta pathway activity. Hierarchical clustering of ovarian cancers using the 378 genes reproducibly generated a distinct gene cluster strongly correlated with TGF-beta pathway activity that discriminates patients based on age. These data suggest that accumulation of age-related epigenetic modifications leads to suppression of TGF-beta signaling and contributes to ovarian carcinogenesis.

348. PMID 21874049
Epithelial-mesenchymal (EMT) and mesenchymal-epithelial (MET) transitions occur in the development of human tumorigenesis and are part of the natural history of the process to adapt to the changing microenvironment. In this setting, the miR-200 family is recognized as a master regulator of the epithelial phenotype by targeting ZEB1 and ZEB2, two important transcriptional repressors of the cell adherence (E-cadherin) and polarity (CRB3 and LGL2) genes. Recently, the putative DNA methylation associated inactivation of various miR-200 members has been described in cancer. Herein, we show that the miR-200ba429 and miR-200c141 transcripts undergo a dynamic epigenetic regulation linked to EMT or MET phenotypes in tumor progression. The 5'-CpG islands of both miR-200 loci were found unmethylated and coupled to the expression of the corresponding miRNAs in human cancer cell lines with epithelial features, such as low levels of ZEB1/ZEB2 and high expression of E-cadherin, CRB3 and LGL2, while CpG island hypermethylation-associated silencing was observed in transformed cells with mesenchymal characteristics. The recovery of miR-200ba429 and miR-200c141 expression by stable transfection in the hypermethylated cells restored the epithelial markers and inhibited migration in cell culture and tumoral growth and metastasis formation in nude mice. . In fact, careful laser microdissection in human primary colorectal tumorigenesis unveiled that in normal colon mucosa crypts (epithelia) and stroma (mesenchyma) already are unmethylated and methylated at these loci, respectively; and that the colorectal tumors undergo selective miR-200 hypermethylation of their epithelial component. These findings indicate that the epigenetic silencing plasticity of the miR-200 family contributes to the evolving and adapting phenotypes of human tumors.

349. PMID 20888937
Epoxyeicosatrienoic acids, derived from arachidonic acid, function as antihypertensive and antihypertrophic mediators in the cardiovascular system. They are hydrolyzed by soluble epoxide hydrolase (sEH). Pharmacological inhibition of sEH increases the level of epoxyeicosatrienoic acids, which may have a cardiovascular protective effect. However, the regulation and function of sEH in cancer are largely unknown. The present study investigated whether DNA methylation regulates the expression of sEH in carcinoma HepG2 cells. The mRNA and protein expressions of sEH in HepG2 cells were lower than those in transformed human embryonic kidney cells and in primary cultured human endothelial cells. Bioinformatic analysis revealed a putative CpG island and 5 SP-1 binding sites located in the promoter region of the sEH gene. Furthermore, the sEH expression was significantly enhanced by demethylation treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, and the sEH promoter was transformed from hypermethylation to hypomethylation as detected by methylation-specific PCR and bisulfite sequencing. Transient transfection assays showed that the activity of the human sEH promoter was increased in HepG2 cells in response to 5-Aza-CdR. Five SP-1 binding sites in the promoter region responding to treatment with 5-Aza-CdR were identified by construct deletion and mutation analysis and chromatin immunoprecipitation assay. Interestingly, adenoviral overexpression of sEH in HepG2 cells decreased cell proliferation. Thus, SP-1 is involved in the decrease in the transcription of sEH as a result of DNA methylation in HepG2 cells, which might contribute to epigenetic mechanism-induced carcinogenesis in hepatocytes.

350. PMID 21990320
Epstein-Barr virus (EBV) is associated with Burkitt lymphoma, nasopharyngeal carcinoma, opportunistic lymphomas in immunocompromised hosts, and a fraction of gastric cancers. Aberrant promoter methylation accompanies human gastric carcinogenesis, though the contribution of EBV to such somatic methylation changes has not been fully clarified. We analyzed promoter methylation in gastric cancer cases with Illumina's Infinium BeadArray and used hierarchical clustering analysis to classify gastric cancers into 3 subgroups: EBV(-)/low methylation, EBV(-)/high methylation, and EBV(+)/high methylation. The 3 epigenotypes were characterized by 3 groups of genes: genes methylated specifically in the EBV(+) tumors (e.g., CXXC4, TIMP2, and PLXND1), genes methylated both in EBV(+) and EBV(-)/high tumors (e.g., COL9A2, EYA1, and ZNF365), and genes methylated in all of the gastric cancers (e.g., AMPH, SORCS3, and AJAP1). Polycomb repressive complex (PRC) target genes in embryonic stem cells were significantly enriched among EBV(-)/high-methylation genes and commonly methylated gastric cancer genes (P = 2 × 10(-15) and 2 × 10(-34), respectively), but not among EBV(+) tumor-specific methylation genes (P = 0.2), suggesting a different cause for EBV(+)-associated de novo methylation. When recombinant EBV was introduced into the EBV(-)/low-methylation epigenotype gastric cancer cell, MKN7, 3 independently established subclones displayed increases in DNA methylation. The promoters targeted by methylation were mostly shared among the 3 subclones, and the new methylation changes caused gene repression. In summary, DNA methylation profiling classified gastric cancer into 3 epigenotypes, and EBV(+) gastric cancers showed distinct methylation patterns likely attributable to EBV infection.

351. PMID 20116391
Estrogen receptor alpha (ERalpha) is a member of a large conserved superfamily of steroid hormone nuclear receptors which regulates many physiological pathways by acting as a ligand-dependent transcription factor. Evidence is emerging that estrogens also induce rapid signaling to the downstream kinase cascades; however the mechanisms underlying this nongenomic function remain poorly understood. We have recently shown that ERalpha is methylated specifically by the arginine methyltransferase PRMT1 at arginine 260 in the DNA-binding domain of the receptor. This methylation event is required for mediating the extra-nuclear function of the receptor which would thereby interact with Src/FAK and p85 and propagate the signal to downstream transduction cascades that orchestrate cell proliferation and survival. . Hypermethylation of ERalpha in breast cancer might cause hyperactivation of cellular kinase signaling, notably of Akt, described as a selective survival advantage for primary tumor cells even in the presence of anti-estrogens. A detailed understanding of the molecular mechanisms that control estrogen signaling in breast cancer is a crucial step in identifying new effective therapies.

352. PMID 18635238
Even after tremendous molecular studies, early detection,more accurate and sensitive diagnosis, and prognosis of breast cancer appear to be a riddle so far. To stab the enigma, this study is designed to envisage DNA methylation signatures as cancer-specific and stage-specific biomarkers in Indian patients. Rigorous review of scattered scientific reports on aberrant DNA methylation helped us to select and analyze a potential tumor suppressor gene pair (FHIT and p16 genes) in breast cancer patients. Methylation signatures from 232 primary sporadic breast cancer patients were pinpointed by methylation-specific PCR (MSP). To increase the sensitivity, we combined both MSP and expression studies (RT-PCR and Northern blotting) in a reproducible manner. Statistical analysis illustrated that hypermethylation of FHIT gene ( p < 0.0001) and p16 gene ( p=0.04) may be used as a potential diagnostic marker to diagnose the early and locally advanced stages of breast cancer. Additionally, the study authenticates the dependency of methylation and expressional loss of p16 gene on FHIT gene silencing. This observation not only describes the severity of disease when both genes are silenced but also drives to speculate the molecular cross talk between two genes or genetic pathways dictated by them separately.

353. PMID 20711609
Ex-adenoma carcinoma (EAC) is a carcinoma with contiguous adenoma element in its vicinity which provides a morphological evidence for adenoma-carcinoma sequence. During multistep colorectal carcinogenesis, promoter CpG island hypermethylation has been known to increase in a stepwise manner whereas diffuse genomic hypomethylation has been known to be an early event and not progress. However, some controversies exist. EAC is a good model to study the timing of hypermethylation and hypomethylation changes during multistep carcinogenesis, which this study aimed to elucidate. We analyzed 39 cases of EAC for their methylation status in eight DNA methylation markers of CpG island methylator phenotype (CIMP) panel, ten CIMP-nonrelated, cancer-specific markers, and three repetitive DNA elements (ALU, LINE-1, and SAT2) using MethyLight assay or combined bisulfite restriction analysis. Twenty-two cases of cancers had contiguous tubulovillous adenomas and 17 cases had contiguous tubular adenomas. Regardless of CIMP markers or nonrelated markers, a significant increase in the number of methylated genes was found from normal mucosa to adenoma, whereas no increase was found from adenoma to carcinoma. Both ALU and LINE-1 showed a significant decrease of methylation levels from normal mucosa to adenoma (p?<?0.05), but there is no difference between adenoma and cancer. However, SAT2 methylation level exhibited a stepwise decrease from normal mucosa to adenoma to cancer. Our findings suggest that morphological progression from traditional adenoma to carcinoma does not appear to be accompanied by increases in promoter CpG island hypermethylation or repetitive DNA hypomethylation, except for SAT2 hypomethylation which showed continuous progression during multistep carcinogenesis.

354. PMID 20603612
Experimental and clinical data support a growth inhibitory role for HER4 in breast cancer. Clinically HER4 expression is extinguished during breast tumorigenesis supporting a tumor suppressor function for HER4, however, a molecular mechanism to explain the selective loss of HER4 expression has remained elusive. Epigenetic mechanisms, for example, aberrant gene promoter hypermethylation, have been shown to ablate tumor suppressor gene expression in breast carcinomas. We identified a CpG island within the HER4 promoter and show by pyrosequencing of bisulfite-treated DNA an inverse correlation between HER4 expression and the extent of promoter methylation. Treatment of the HER4-negative BT20 cell line with the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC)-enhanced HER4 expression, confirming a role for DNA methylation in suppressed HER4 expression. DAC treatment to reactive HER4 expression in combination with the HER4 ligand heregulin-ß1 (HRG) resulted in apoptosis of BT20 cells providing a novel therapeutic strategy for triple-negative tumors. The BT20 cells were rescued from apoptosis when preincubated with HER4 small interfering RNA, thereby confirming a role for HER4 in DAC/HRG-induced apoptosis. We verified HER4 promoter methylation in primary breast carcinomas and detected a significant increase in HER4 promoter methylation in HER4-negative breast tumors (P<0.001). Furthermore, increased levels of HER4 promoter methylation were significantly associated with worse patient prognosis (P=0.0234). Taken together, our data support a tumor suppressor function for HER4, which is epigenetically suppressed in breast tumors through promoter hypermethylation.

355. PMID 22355787
Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 µm in diameter (PM(2.5)) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM(2.5) via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm(2)). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer.

356. PMID 18635238
Expression levels of estrogen receptor (ER) alpha govern estrogen-dependent growth, response to endocrine therapy, and prognosis in ERalpha-positive breast cancer. Multiple mechanisms involved in altering ERalpha gene expression in breast cancer have been identified, including ERalpha gene amplification as well as transcriptional silencing by DNA methylation of CpG islands within the ERalpha promoter and mutations within the open reading frame of ERalpha. However, expression levels of ERalpha in breast cancer tissues differ widely among patients, and frequently change during disease progression and in response to systemic therapies. Recent evidence has shown that microRNA mutations or misexpression correlate with various human cancers, and miR-206 is reported to decrease endogenous ERalpha mRNA and protein levels in human MCF-7 breast cancer cells via two specific target sites within the 3'-untranslated region of the human ERalpha transcript. In this study, we show for the first time that miR-206 expression is markedly decreased in ERalpha-positive human breast cancer tissues assayed by quantitative reverse transcription-PCR analysis. Moreover, we observe that miR-206 expression is inversely correlated with ERalpha but not ERbeta mRNA expression in breast cancer tissues. Transfection experiments revealed that introduction of miR-206 into estrogen-dependent MCF-7 breast cancer cells inhibits cell growth in a dose- and time-dependent manner. Our results suggest that miR-206 could be a novel candidate for endocrine therapy that targets only ERalpha in breast cancer.

357. PMID 22562246
Expression of E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often lost due to promoter DNA methylation in basal-like breast cancer (BLBC), which contributes to the metastatic advantage of this disease; however, the underlying mechanism remains unclear. Here, we identified that Snail interacted with Suv39H1 (suppressor of variegation 3-9 homolog 1), a major methyltransferase responsible for H3K9me3 that intimately links to DNA methylation. We demonstrated that the SNAG domain of Snail and the SET domain of Suv39H1 were required for their mutual interactions. We found that H3K9me3 and DNA methylation on the E-cadherin promoter were higher in BLBC cell lines. We showed that Snail interacted with Suv39H1 and recruited it to the E-cadherin promoter for transcriptional repression. Knockdown of Suv39H1 restored E-cadherin expression by blocking H3K9me3 and DNA methylation and resulted in the inhibition of cell migration, invasion and metastasis of BLBC. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT, but also paves a way for the development of new treatment strategies against this disease.Oncogene advance online publication, 7 May 2012; doi:10.1038/onc.2012.169.

358. PMID 20848182
Expression of certain microRNA genes is regulated by DNA methylation, which in turn affects the activities of their downstream molecules. Our previous study showed that methylated let-7a-3 was associated with low IGF-II expression and favorable prognosis of ovarian cancer. The roles of let-7a-3 methylation in breast cancer and in regulation of IGF expression in the tumor are still unknown. Let-7a-3 methylation, IGF mRNAs, and peptides were analyzed in 348 breast cancer samples using quantitative methylation-specific PCR, qRT-PCR, and ELISA, respectively. The associations of let-7a-3 methylation with IGFs, disease features, and patient survivals were analyzed. In vitro experiments were performed using HeLa cells transfected with let-7a precursors to assess the effect of let-7a on IGF expression. Let-7a-3 methylation was detected frequently in breast cancer. An inverse correlation between let-7a-3 methylation and IGF expression was observed in breast cancer, which was similar to that seen in ovarian cancer. Our in vitro experiment showed that let-7a could increase IGF expression in cancer cells which had low endogenous let-7a. Let-7a-3 methylation was also found to be associated with high grade tumors and ER- or PR-negative cancer. However, let-7a-3 methylation was not associated with disease-free survival or overall survival of breast cancer patients. The study provides further evidence in support of the notion that epigenetic regulation of let-7a-3 may affect the actions of IGFs in cancer. Let-7a may up-regulate the expression of IGFs in cancer cells, which is different from its inhibitory effects on other oncogenes.

359. PMID 22626806
Expression of specific breast cancer stem cells (BCSCs) is seen in aggressive tumors, but their regulation is unclear. Epigenetic changes influence gene expression and are implicated in breast cancer progression. We hypothesized that promoter methylation regulates specific BCSC-related genes [CD44, CD133, CD24, MSH1 (alias, Musashi-1), and ALDH1] and that this epigenetic profile can identify aggressive subtypes, such as triple-negative breast cancer (TNBC). Methylation analysis was performed using MassARRAY EpiTYPER sequencing; CpG-rich sites were identified in the promoter regions of BCSC genes, except ALDH1. These sites were screened by treatment with 5-aza-2'-deoxycytidine in four TN and five non-TNBC cell lines. The specific regulatory CpG site demonstrating the most significant inverse correlation between CpG site methylation and mRNA expression was identified for CD44, CD133, and Musashi-1, but not for CD24. . The IHC staining of primary tumors with the highest and lowest methylation levels revealed the strongest staining in hypomethylated specimens, suggesting that hypomethylation leads to gene activation. We demonstrate that methylation is a significant mechanism regulating CD44, CD133, and Musashi-1, and that gene hypomethylation correlates with TNBC. Assessment of epigenetic changes in BCSC genes may provide a more accurate classification of TNBC and could be developed as potential therapeutic targets.

360. PMID 20926426
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.

361. PMID 19060847
Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) is rarely found in the large intestine. Because of its rarity, the underlying epigenetic and genetic changes in the pathogenesis and prognostic factors have yet to be well established. For this purpose, methylation profiles and API2/MALT1 fusion in marginal zone B-cell lymphoma of MALT in the colorectum were studied and compared with treatment outcomes. For methylation analyses, 7 independent CpG islands (p15, p16, DAP kinase, hMLH1, MINT1, MINT2, and MINT31) were examined and RT-PCR for detection of API2/MALT1 fusion transcripts were performed in 15 colorectal marginal zone B-cell lymphoma of MALT in a single institution. Marginal zone B-cell lymphomas of MALT from both gastric and colorectal locations were also examined. In methylation analyses (n=13), 8 of 13 (62%) cases were classified as CIMP (CpG island methylator phenotype)-positive. Methylation was more frequently observed in cases with advanced disease stages than with earlier stages; an average of two methylated loci for earlier stages (IE or IIE) versus four loci in advanced ones (IVE; P=0.02). The estimated 5-year progression-free survival was 42% for CIMP-positive and 100% for CIMP-negative cases (P=0.03). API2/MALT1 fusion transcripts were found in two of nine cases (22%). In two cases with concurrent gastric and colorectal involvement of marginal zone B-cell lymphoma of MALT, methylation patterns and API2/MALT1 fusion results were different by location. Our results suggest that methylation profiles define a clinically more aggressive subgroup and multiclonal origin for marginal zone B-cell lymphoma of MALT with multiorgan involvement.

362. PMID 20856924
Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here, we report that highly metastatic rhabdomyosarcoma (RMS) cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic mechanisms. Notably, treatment with histone deacetylase (HDAC) inhibitors or DNA demethylating agents could restore Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels. However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic genes.

363. PMID 22039417
FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10) human hepatocellular carcinoma, 66.7% (6/9) liver cancer cell lines and 100% (6/6) colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2'-deoxycytidine (Aza), indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS) generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis.

364. PMID 21567085
Fanconi anemia (FA) associated genes [FANCA, -B, -C, FANCD1(BRCA2), -D2, -E, -F, -G, -I, -L, -M, FANCN (PALB2), FANCJ(BRIP1) and FA-linked BRCA1] encode proteins of DNA damage response pathways mutated in FA patients. FA is characterized by congenital malformations, chromosomal instability and high cancer susceptibility. FA patients have a 500-700 times higher risk of head and neck squamous cell carcinoma (HNSCC) compared to the non-FA population. As DNA methylation comprises one of the known gene inactivation mechanisms in cancer we have investigated the methylation status of 13 FA and one FA-linked gene in order to assess the role of FA in sporadic laryngeal squamous cell carcinoma (LSCC) tumor samples. Thirteen laryngeal squamous carcinoma cell lines (UT-SCC) and 64 primary laryngeal carcinoma cases were analyzed by bisulfite pyrosequencing. DNA from buccal swabs of 10 healthy volunteers was used as a control group. Promoter regions of FANCA, BRCA1 and BRCA2 displayed recurrent alterations in the methylation levels in cancer samples as compared to buccal swabs controls. For FANCA, hypomethylation was observed in 11/13 cell lines (p<0.0003) and all 64 primary larynx samples (p<0.001) compared to buccal swabs. For BRCA1, 4/13 cell lines (p=0.04) and 3/58 primary laryngeal cases (p=0.22) showed hypomethylation. In BRCA2, all 13 cell lines (p<0.0001) 4/63 primary LSCC (p<0.01) showed hypermethylation as compared to controls. In conclusion, we show recurrent alterations of DNA methylation levels in three Fanconi anemia genes which might contribute to the pathogenesis of LSCC.

365. PMID 21968944
Favorable responses to temozolomide chemotherapy have recently been reported in primary central nervous system lymphoma (PCNSL) patients who are refractory to high-dose methotrexate therapy. The gene encoding the DNA repair enzyme O (6)-methylguanine-DNA methyltransferase (MGMT) is transcriptionally silenced by promoter methylation in several human tumors, including gliomas and systemic lymphomas. MGMT promoter methylation is also a prognostic marker in glioblastoma patients treated with temozolomide. To validate temozolomide treatment in PCNSL, we applied methylation-sensitive high resolution melting (MS-HRM) analysis to quantitate MGMT methylation in PCNSL. MGMT promoter methylation was detected in tumors from 23 (51%) of 45 PCNSL patients, 11 of which were considered to have high (more than 70.0%) methylation status. Of the five recurrent PCNSLs treated with temozolomide, four cases responded, with three achieving complete response and one, a partial response. All four responsive PCNSLs had methylated MGMT promoters, whereas the non-responsive recurrent PCNSL did not. Thus, the use of quantitative MS-HRM analysis for the detection of MGMT promoter methylation has been suggested in PCNSL for the first time. The assay allows rapid and high-throughput evaluation of the MGMT methylation status, and seems to be promising in clinical settings. MGMT promoter methylation may become a useful marker for predicting the response of PCNSLs to temozolomide.

366. PMID 22374981
Few studies have evaluated the association between DNA methylation in white blood cells (WBC) and the risk of breast cancer. The evaluation of WBC DNA methylation as a biomarker of cancer risk is of particular importance as peripheral blood is often available in prospective cohorts and easier to obtain than tumor or normal tissues. Here, we used prediagnostic blood samples from three studies to analyze WBC DNA methylation of two ATM intragenic loci (ATMmvp2a and ATMmvp2b) and genome-wide DNA methylation in long interspersed nuclear element-1 (LINE1) repetitive elements. Samples were from a case-control study derived from a cohort of high-risk breast cancer families (KConFab) and nested case-control studies in two prospective cohorts: Breakthrough Generations Study (BGS) and European Prospective Investigation into Cancer and Nutrition (EPIC). Bisulfite pyrosequencing was used to quantify methylation from 640 incident cases of invasive breast cancer and 741 controls. Quintile analyses for ATMmvp2a showed an increased risk of breast cancer limited to women in the highest quintile [OR, 1.89; 95% confidence interval (CI), 1.36-2.64; P = 1.64 × 10(-4)]. We found no significant differences in estimates across studies or in analyses stratified by family history or menopausal status. However, a more consistent association was observed in younger than in older women and individually significant in KConFab and BGS, but not EPIC. We observed no differences in LINE1 or ATMmvp2b methylation between cases and controls. Together, our findings indicate that WBC DNA methylation levels at ATM could be a marker of breast cancer risk and further support the pursuit of epigenome-wide association studies of peripheral blood DNA methylation.

367. PMID 21067440
Few studies have examined the association between methylenetetrahydrofolate reductase (MTHFR) SNPs, epigenetic changes, and multiple myeloma (MM). We wished to determine genotype distributions for MTHFR 1298AC SNP in cases of MM and healthy controls and to examine whether there is any correlation between the methylation status of the CpG island of CDKN2A and Snk/Plk2 and MTHFR genotypes and with overall survival (OS) and other relevant clinical parameters. Bone marrow and peripheral blood were obtained from 45 patients with MM and 77 controls, respectively. The frequencies of the MTHFR 1298AA, 1298AC, and 1298CC genotypes were 53.3%, 40%, and 6.7% for the patient population and 50.6%, 41.6%, and 7.8% for the controls. No statistically significant difference was found in genotype distribution between cases and controls. No correlation was noted between MTHFR genotypes and OS, disease stage, bone disease, anemia, and extramedullary disease. Regarding CDKN2A and Snk/Plk2 CpG island methylation analysis, we found 12 of 45 patients and 27 of 45, respectively, to be methylated. CDKN2A and Snk/Plk2 methylation did not correlate with MTHFR genotypes. Herein, we report the identification of Snk/Plk2 as a novel methylated gene in MM and show that methylation is not influenced in this CpG island or in that of a previously described methylated gene, CDKN2A, in MM. Further evaluation in a larger sample of patients is needed in order to better define the prognostic and clinical value, if any, of MTHFR 1298 polymorphisms and CDKN2A and Snk/Plk2 methylation in the pathogenesis of MM.

368. PMID 21896932
Fibulin-3 gene has been identified as an antagonist of angiogenesis. We investigated the protein expression and promoter methylation status of fibulin-3 gene in colorectal cancer (CRC) and analyzed its correlation with clinicopathological factors. The study population enrolled 85 paired CRC specimens and adjacent normal tissues, as well as 32 cases of colorectal adenoma. Genomic DNA was extracted from paraffin-embedded samples using manual microdissection. Methylation-specific polymerase chain reaction (MSP) was used to determine the promoter methylation status and fibulin-3 gene expression was detected by immunohistochemistry. The results showed that, downregulation or silence of fibulin-3 protein was found in 57.6% (49/85) of CRC tissues, which was significantly higher than that of adjacent normal tissues (28.2%, 24/85) and colorectal adenoma (34.4%, 11/32) (P<0.05). Furthermore, 33 out of 85 (38.8%) CRC specimens showed hypermethylation in fibulin-3 promoter region, and fibulin-3 methylation was closely correlated with its loss of expression. Also, downregulation of fibulin-3 was associated with advanced stage (P=0.008) and lymph node metastasis (P=0.013). Survival analyses and Cox proportional hazard models indicated that fibulin-3 downregulation was an independent factor related to adverse overall survival (OS) and disease-free survival (DFS) of CRC. In conclusion, we found aberrant methylation caused fibulin-3 downregulation in CRC, and fibulin-3 downregulation was correlated with tumor stage, lymph node metastasis and poor survival, which maybe use as a potential prognostic factor for CRC.

369. PMID 21901248
Fibulin-3, an extracellular glycoprotein, has been suggested as having functions in tissue regeneration and organogenesis. However, its role in cancer remains unclear. We show here that fibulin-3 was silenced by hypermethylation of the promoter region in the relatively invasive A549 non-small cell lung cancer (NSCLC) cells compared with less invasive H460 NSCLC cells. Enforced expression of fibulin-3 in A549 cells down-regulated cellular MMP-7 and MMP-2, which was followed by inhibition of cell invasiveness. Conversely, suppression of fibulin-3 expression with siRNA in H460 cells showed the opposite effect. These results indicate that fibulin-3 is a negative regulator of invasiveness in NSCLC and further studies are needed for its therapeutic applications in treatment of NSCLC.

370. PMID 19010819
Flap endonuclease 1 (FEN1) is a structure-specific nuclease best known for its critical roles in Okazaki fragment maturation, DNA repair, and apoptosis-induced DNA fragmentation. Functional deficiencies in FEN1, in the forms of somatic mutations and polymorphisms, have recently been shown to lead to autoimmunity, chronic inflammation, and predisposition to and progression of cancer. To explore how FEN1 contributes to cancer progression, we examined FEN1 expression using 241 matched pairs of cancer and corresponding normal tissues on a gene expression profiling array and validated differential expression by quantitative real-time PCR and immunohistochemistry. Furthermore, we defined the minimum promoter of human FEN1 and examined the methylation statuses of the 5' region of the gene in paired breast cancer tissues. We show that FEN1 is significantly up-regulated in multiple cancers and the aberrant expression of FEN1 is associated with hypomethylation of the CpG island within the FEN1 promoter in tumor cells. The overexpression and promoter hypomethylation of FEN1 may serve as biomarkers for monitoring the progression of cancers.

371. PMID 22120154
Focal CpG island hypermethylation and diffuse genomic hypomethylation signify the changes in the DNA methylation status in cancer cells. ALU and LINE-1 repetitive DNA elements comprise ~28% of the human genome. PCR-based measurements of these repetitive DNA elements can be used as a surrogate marker of the genomewide methylation content. Our study aimed to identify the timing of ALU and LINE-1 hypomethylations during multistep gastric carcinogenesis and their prognostic implications in gastric cancer (GC). In our study, we analyzed the methylation statuses of ALU and LINE-1 in 249 cases of gastric biopsy samples and another independent set of 198 cases of advanced GC by pyrosequencing. Regardless of the Helicobacter pylori infection status, a significant decrease in the ALU methylation levels was noted during the transitions from chronic gastritis to intestinal metaplasia and from gastric adenoma to GC. LINE-1 methylation decreased during the transition from intestinal metaplasia to gastric adenoma and no further decrease occurred during the transition from gastric adenoma to GC. A low LINE-1 methylation status was strongly associated with poor prognosis in GC. A multivariate analysis revealed that LINE-1 methylation status was an independent prognostic factor. Our findings suggest that ALU and LINE-1 hypomethylations are early events during multistep gastric carcinogenesis. Furthermore, the LINE-1 methylation status can be used as a molecular biomarker to define a subset of GC patients with poor prognosis.

372. PMID 22609762
Folate exists as functionally diverse species within cells. Although folate deficiency may contribute to DNA hypomethylation in colorectal cancer, findings on the association between total folate concentration and global DNA methylation have been inconsistent. This study determined global, LINE-1, and Alu DNA methylation in blood and colon of healthy and colorectal cancer patients and their relationship to folate distribution. Blood and normal mucosa from 112 colorectal cancer patients and 114 healthy people were analyzed for global DNA methylation and folate species distribution using liquid chromatography tandem mass spectrometry. Repeat element methylation was determined using end-specific PCR. Colorectal mucosa had lower global and repeat element DNA methylation compared with peripheral blood (P < 0.0001). After adjusting for age, sex and smoking history, global but not repeat element methylation was marginally higher in normal mucosa from colorectal cancer patients compared with healthy individuals. Colorectal mucosa from colorectal cancer subjects had lower 5-methyltetrahydrofolate and higher tetrahydrofolate and formyltetrahydrofolate levels than blood from the same individual. Blood folate levels should not be used as a surrogate for the levels in colorectal mucosa because there are marked differences in folate species distribution between the two tissues. Similarly, repeat element methylation is not a good surrogate measure of global DNA methylation in both blood and colonic mucosa. There was no evidence that mucosal global DNA methylation or folate distribution was related to the presence of cancer per se, suggesting that if abnormalities exist, they are confined to individual cells rather than the entire colon. Cancer Prev Res; 1-9. ©2012 AACR.

373. PMID 21129061
For some, glioma biomarkers have been expected to solve common diagnostic problems in routine neuropathology service caused by insufficient material, technical shortcomings or lack of experience. Further, biomarkers should predict patient outcome and direct optimal therapy for the individual patient. Unfortunately, current biomarkers still fall somewhat short of these grand expectations. While there has been some progress, it has generally been slow and in small steps. In this review, the newest set of glioma biomarkers: O(6) -methylguanine-DNA methyltransferase (MGMT) methylation, BRAF fusion and IDH1 mutation are discussed. MGMT methylation is well established as a prognostic/predictive marker for glioblastoma; however, technical questions regarding testing remain, it is not currently utilized widely in guiding patient management, and it has proven to be of no assistance in diagnostics. In contrast, BRAF fusion and IDH1 mutation analyses promise to be very helpful for classifying and grading gliomas, while their potential predictive value has yet to be established.

374. PMID 18181681
Fragile X syndrome is the most common cause of inherited mental retardation among males. In most cases, the molecular basis of fragile X syndrome is the expansion and subsequent methylation of a CGG trinucleotide repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. Laboratory diagnosis usually relies on a combination of Southern blot and polymerase chain reaction analyses. In this case report we describe an unusual Southern blot result in a patient who presented with developmental delay and had a normal CGG repeat number by polymerase chain reaction analysis. Further investigation revealed a novel G3310C transversion in the FMR1 gene resulting in a new recognition site for the BssHII restriction enzyme. This novel restriction site could potentially mimic a partial deletion of the FMR1 gene on Southern blot analysis and thus represents a possible pitfall in the diagnosis of fragile X syndrome.

375. PMID 18832455
Fragile X syndrome is the most common cause of inherited mental retardation and the second most common cause of mental impairment after trisomy 21. It occurs because of a failure to express the fragile X mental retardation protein. The most common molecular basis for the disease is the abnormal expansion of the number of CGG repeats in the fragile X mental retardation 1 gene (FMR1). Based on the number of repeats, it is possible to distinguish four types of alleles: normal (5 to 44 repeats), intermediate (45 to 54), premutation (55 to 200), and full mutation (>200). Today, the diagnosis of fragile X syndrome is performed through a combination of PCR to identify fewer than 100 repeats and of Southern blot analysis to identify longer alleles and the methylation status of the FMR1 promoter. We have developed a methylation-specific multiplex ligation-dependent probe amplification assay to analyze male fragile X syndrome cases with long repeat tracts that are not amplifiable by PCR. This inexpensive, rapid and robust technique provides not only a clear distinction between male pre- and full-mutation FMR1 alleles, but also permits the identification of genomic deletions, a less frequent cause of fragile X syndrome.

376. PMID 19268989
Fragile X syndrome, the most prevalent inherited cause of mental retardation, is related to hyperexpansion of a polymorphic CGG repeat of the FMR1 gene. Expansion of 55-200 repeats are called premutations and characterize carriers who usually have no mental impairment. The disease causing full mutations exceed 200 CGG repeats, are hypermethylated and lead to transcriptional silencing of the gene and absence of the Fragile X mental retardation protein (FMRP). Diagnostic approaches involve molecular and immunocytochemical techniques. Southern blot, which allows mutations to be detected and methylation status to be determined in a single test, remains the procedure of choice for most laboratories. Modifications of PCR methods, including methylation specific PCR, are also proposed but their implementation is still in question because of inherent difficulties to amplify CGG repeats, distinguish between mosaic patterns and interpret results in female individuals. The FMRP antibody test is also suitable for large population screening and elucidation of Fragile X syndrome cases with no CGG expansion, but it is not widely applied. In search for novel diagnostic approaches, use of PCR as a first prescreening test followed by Southern blot is considered the most reliable procedure.

377. PMID 21943489
Functionally exhausted T cells have high expression of the PD-1 inhibitory receptor, and therapies that block PD-1 signaling show promise for resolving chronic viral infections and cancer. By using human and murine systems of acute and chronic viral infections, we analyzed epigenetic regulation of PD-1 expression during CD8(+) T cell differentiation. During acute infection, naive to effector CD8(+) T cell differentiation was accompanied by a transient loss of DNA methylation of the Pdcd1 locus that was directly coupled to the duration and strength of T cell receptor signaling. Further differentiation into functional memory cells coincided with Pdcd1 remethylation, providing an adapted program for regulation of PD-1 expression. In contrast, the Pdcd1 regulatory region was completely demethylated in exhausted CD8(+) T cells and remained unmethylated even when virus titers decreased. This lack of DNA remethylation leaves the Pdcd1 locus poised for rapid expression, potentially providing a signal for premature termination of antiviral functions.

378. PMID 21122983
Galectin-1 (gal-1) is an important molecule secreted by many tumors, which induces apoptosis in activated T-cells and promotes tumor angiogenesis, both of which phenomena facilitate successful establishment of tumor in the body. However, little is known about the function of intracellular gal-1 or its transcriptional regulation in colorectal cancer (CRC). Here, we demonstrate that gal-1 expression is epigenetically regulated in CRC through promoter hypermethylation. Intracellular gal-1 induces cell cycle arrest and apoptosis in CRC cells with concomitant down-regulation of Wnt and NF-?B signaling pathways. Together, these data suggested that gal-1 silencing imparts CRC with the ability to proliferate and escape apoptosis.

379. PMID 22696657
Gammaretroviral and lentiviral vectors have been used successfully in several clinical gene therapy trials, although powerful enhancer elements have caused insertional mutagenesis and clonal dysregulation. Self-inactivating vectors with internal heterologous regulatory elements have been developed as potentially safer and more effective alternatives. Lentiviral vectors containing a ubiquitous chromatin opening element from the human HNRPA2B1-CBX3 locus (A2UCOE), which allows position-independent, long-term transgene expression, are particularly promising. Using a recently described assay, aberrantly spliced mRNA transcripts initiated in the vector A2UCOE sequence were found to lead to up-regulation of growth hormone receptor gene (Ghr) expression in transduced murine Bcl-15 cells. Aberrant hybrid mRNA species formed between A2UCOE and a number of other cellular genes were also detected in transduced human PLB-985 myelomonocytic cells. Modification of the A2UCOE by mutation or deletion of recognized and potential cryptic splice donor sites was able to abrogate these splicing events and hybrid mRNA formation in Bcl-15 cells. This modification did not compromise A2UCOE regulatory activity in terms of resistance to CpG methylation and gene silencing in murine P19 embryonic carcinoma cells. These refined A2UCOE regulatory elements are likely to improve intrinsic biosafety, and may be particularly useful for a number of clinical applications where robust gene expression is desirable.

380. PMID 21406965
Gap junctions are specialized plasma membrane domains consisting of channels formed by members of the connexin protein family. Gap junctional intercellular communication is often lost in cancers due to aberrant localization or downregulation of connexins, and connexins are therefore suggested to act as tumor suppressor genes in various tissues. The aim of this study was to investigate the expression pattern and DNA promoter methylation status of connexins in colorectal cancer. Expression of six (GJA1, GJA9, GJB1, GJB2, GJC1 and GJD3) connexin genes was detected in normal colonic tissue samples. GJC1 expression was reduced in colorectal carcinomas compared to normal tissue samples. All analyzed connexins were hypermethylated in colon cancer cell lines, although at various frequencies. GJA4, GJB6 and GJD2 were hypermethylated in 60% (29/48), 25% (12/48) and 96% (46/48) of primary colorectal carcinomas, respectively. However, the methylation status was not associated with gene expression. GJC1 has two alternative promoters, which were methylated in 42% (32/76) and 38% (25/65) of colorectal tumors, and in none of the normal mucosa samples. Expression of GJC1 was significantly lower in methylated compared with unmethylated samples (p < 0.01) and was restored in cell lines treated with the demethylating drug 5-aza-2'deoxycytidine. Taken together, DNA hypermethylation of the promoter region of GJC1, encoding connexin45, is an important mechanism in silencing gene expression in colorectal cancer.

381. PMID 21454413
Gastric B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) develops in the chronically inflamed mucosa of patients infected with the bacterial pathogen Helicobacter pylori. Here we use patient material, primary gastric lymphoma cell cultures, and a preclinical model of the disease to examine the role of microRNA (miRNA)-mediated posttranscriptional regulation--focusing in particular on miR-203 and its target ABL1--in gastric MALT lymphomagenesis. . Treatment of lymphoma B cells with demethylating agents led to increased miR-203 expression and the concomitant downregulation of ABL1, confirming the epigenetic regulation of this miRNA. Ectopic reexpression of miR-203 by transfection of a human lymphoma cell line or lentiviral transduction of explanted primary MALT lymphoma cells was sufficient to prevent tumor cell proliferation in vitro. Similarly, the treatment of primary MALT lymphoma cells with the ABL inhibitors imatinib and dasatinib prevented tumor cell growth. Finally, we show that the treatment of tumor-bearing mice with imatinib induces MALT lymphoma regression in a preclinical model of the disease, implicating ABL1 in MALT lymphoma progression. In summary, our results show that the transformation from gastritis to MALT lymphoma is epigenetically regulated by miR-203 promoter methylation and identify ABL1 as a novel target for the treatment of this malignancy.

382. PMID 22179688
Gastric cancer (GC) is still a leading cause of cancer-related death worldwide, and environmental, genetic, and epigenetic DNA changes are involved in the process of gastric carcinogenesis. The objective of this study was to establish the extent of DNA methylation at various CpG islands in GC and in precancerous changes [gastric noninvasive neoplasia (NIN)]. Eighty-one gastric samples were analyzed using methylation-specific PCR at several CpG islands. Thirty-eight samples were obtained at surgery [19 neoplastic (GC) and 19 nonneoplastic cancer-surrounding tissues (sGC)] and 43 at endoscopy (biopsies in 23 NIN patients and 20 controls). Hypermethylation of TPEF (a growth inhibitor), PTGER3 (a prostaglandin receptor isoform), and MINT31 (a promoter locus regulating calcium channels that is involved in p53 mutation) discriminated NIN and GC from normal mucosa, suggesting an early role as initiating events, whereas hypermethylation at ARGHAP20 developed with the progression from NIN to GC. MINT31 hypermethylation predicted persistence or worsening of NIN and cancer development. In conclusion, these data support a progressive accumulation of aberrant methylations in NIN and GC at various CpG islands with distinct time courses. With hypermethylation, the genes involved in regulating the balance between apoptosis and cell proliferation may become silenced and trigger gastric tumorigenesis. Hypermethylation of MINT31 predicted NIN persistence, as well as progression to higher grade or to GC, and might be used as a marker of GC risk.

383. PMID 21253387
Gastric cancer is one of the leading causes of cancer-related deaths worldwide, although the incidence has gradually decreased in many Western countries. Two main gastric cancer histotypes, intestinal and diffuse, are recognised. Although most of the described genetic alterations have been observed in both types, different genetic pathways have been hypothesized. Genetic and epigenetic events, including 1q loss of heterozygosity (LOH), microsatellite instability and hypermethylation, have mostly been reported in intestinal-type gastric carcinoma and its precursor lesions, whereas 17p LOH, mutation or loss of E-cadherin are more often implicated in the development of diffuse-type gastric cancer. In this review, we summarize the sometimes contradictory findings regarding those markers which influence the progression of gastric adenocarcinoma.

384. PMID 22104201
Gastric carcinoma (GC) is a biologically heterogeneous disease involving numerous genetic and epigenetic alterations. A very small proportion of GCs can be caused by a specific germ-line mutation of the E-cadherin gene (CDH1). Sporadic GC is developed through multistep processes that begin with Helicobacter pylori-induced atrophic gastritis. Epstein-Barr virus is another infectious cause of GC, and the above two infection-associated GCs are characterized by global CpG island methylation in the promoter region of cancer-related genes. Mutations of tumor protein p53 (TP53) and ß-catenin (CTNNB1) genes occur early in the development of GC and contribute to gastric carcinogenesis. Furthermore, significant numbers of GCs show loss of Runx3 due to hemizygous deletion and hypermethylation of the promoter region. Aberrant Cdx2 expression has been shown in precancerous lesions as well as GC. However, it remains unclear whether Cdx2 plays an oncogenic role in gastric carcinogenesis. GC with microsatellite instability is also a well-defined subset exhibiting distinctive clinicopathologic features. Targeted therapy against GC with ERBB2 amplification recently improved the prognosis of patients with advanced GC. In addition, epigenetic changes in GC could be attractive targets for cancer treatment with modulators. A genome-wide search has been undertaken to identify novel methylation-silenced genes in GC, which will help us understand the overall molecular features of GC and further provide novel opportunities in the treatment of GC.

385. PMID 21341273
Gastrokine 1 (GKN1) plays a role in the gastric mucosal defence mechanism and may be a gastric tumour suppressor. We have investigated whether inactivation of the GKN1 gene is involved in the development and/or progression of gastric cancers. GKN1 protein expression was examined in gastric adenomas and cancer and we also analysed GKN1 mutation and epigenetic alteration, DNA copy number change and mRNA transcript expression. The effect of GKN1 on cell proliferation and death was examined in wild-type GKN1-transfected AGS gastric cancer cells. Reduced or loss of GKN1 expression was detected in 36 (90%) and 170 (89.5%) of 40 adenomas and 190 gastric cancers, respectively. Statistically, there was no significant relationship between altered expression of GKN1 protein and clinicopathological parameters, including depth of invasion, location and lymph node metastasis (?(2) test, p > 0.05). In western blot analysis, absence or reduced expression was found in 21 (84.0%) of 25 gastric carcinomas. No mutation was detected in gastric tumours, and hypermethylation of GKN1 gene was found in two tumours. DNA copy number and mRNA transcript of GKN1 were significantly decreased in gastric cancers. In functional analysis, AGS gastric cancer cells transfected with GKN1 wild-type showed marked inhibition of cell proliferation and induction of cell death. These data suggest that inactivation of the GKN1 gene may play an important role in the development of sporadic gastric cancers, as an early event.

386. PMID 22570537
Gene expression profiling has provided insights into different cancer types and revealed tissue-specific expression signatures. Alterations in microRNA expression contribute to the pathogenesis of many types of human diseases. Few studies have integrated all levels of gene expression, miRNA and methylation to uncover correlations between these data types. We performed an integrated profiling to discover instances of miRNAs associated with a gene expression and DNA methylation signature across multiple cancer types. Using data from The Cancer Genome Atlas (TCGA), we revealed a concordant gene expression and methylation signature associated with the microRNA hsa-miR-142 across the same samples. In all cancer types examined, we found a signature of co-expression of a gene set R and methylated sites M, which correlate positively (M+) or negatively (M-) with the expression of hsa-miR-142. The set R consistently contains many genes, such as TRAF3IP3, NCKAP1L, CD53, LAPTM5, PTPRC, EVI2B, DOCK2, LCP2, CYBB and FYB. The signature is preserved across glioblastoma, ovarian, breast, colon, kidney, lung, uterine and rectum cancer. There is 28% overlap of methylation sites in M between glioblastoma (GBM) and ovarian cancer. There is 60% overlap of genes in R between GBM and ovarian (P = 1.3e(-11)). Most of the genes in R are known to be expressed in lymphocytes and haematopoietic stem cells, while M reflects membrane proteins involved in cell-cell adhesion functions. We speculate that the hsa-miR-142 associated signature may signal haematopoietic-specific processes and an accumulation of methylation events triggering a progressive loss of cell-cell adhesion. We also observed that GBM samples belonging to the proneural subtype tend to have underexpressed hsa-miR-142 and R genes, hypomethylated M+ and hypermethylated M-, while the mesenchymal samples have the opposite profile.

387. PMID 20573372
Gene methylation leads to malignant progression in some tumors. The mechanism by which mesothelin is expressed in malignant mesothelioma (MM) is not well understood. MM is histologically divided into 3 subtypes, that is, the epithelioid, sarcomatoid, and biphasic types, and it was shown that mesothelin expression was restricted to the epithelioid type and the epithelioid component of the biphasic type of MM. However, its regulatory mechanism of expression has not been clarified. . We confirmed that mesothelin was expressed in the epithelioid type and epithelioid component of the biphasic type of MM but neither in the sarcomatoid type nor sarcomatous component of the biphasic type. Surprisingly, the MSLN promoter was significantly hypomethylated in the MM cases regardless of its subtype, compared with the other pulmonary lesions and normal lung tissue samples. These findings suggested that hypomethylation of the MSLN promoter may be specifically associated with the formation of MM, regardless of its expression status, and that the expression of mesothelin protein was lost in the sarcomatoid type by some unknown posttranscriptional regulatory mechanism. We also identified 4 CpG sites, among the 20 sites studied, to be more specifically hypomethylated in MM cases.

388. PMID 20178103
Gene promoter CpG island hypermethylation is associated with Helicobacter pylori (H. pylori) infection and may be an important initiator of gastric carcinogenesis. . H. pylori colonies were cultured from the same subjects, and gastric pathology was evaluated. Virulence factors cagA (including segments of the 3' end, encoding EPIYA polymorphisms) and vacA s and m regions were characterized in the H. pylori strains. Using univariate analysis, we found significantly elevated levels of RPRM and TWIST1 promoter DNA methylation in biopsies from residents of the high-risk region compared to those from residents of the low-risk region. The presence of cagA and vacA s1m1 alleles were independently associated with elevated levels of promoter DNA methylation of RPRM and MGMT. Using multivariate analysis, DNA methylation of RPRM was associated with location of residence, cagA and vacA s1m1 status and methylation of TWIST1. We conclude that cagA and vacA virulence determinants are significantly associated with quantitative differences in promoter DNA methylation in these populations, but that other as yet undefined factors that differ between the populations may also contribute to variation in methylation status.

389. PMID 22056143
Gene signatures derived from cancer stem cells (CSCs) predict tumor recurrence for many forms of cancer. Here, we derived a gene signature for colorectal CSCs defined by high Wnt signaling activity, which in agreement with previous observations predicts poor prognosis. Surprisingly, however, we found that elevated expression of Wnt targets was actually associated with good prognosis, while patient tumors with low expression of Wnt target genes segregated with immature stem cell signatures. We discovered that several Wnt target genes, including ASCL2 and LGR5, become silenced by CpG island methylation during progression of tumorigenesis, and that their re-expression was associated with reduced tumor growth. Taken together, our data show that promoter methylation of Wnt target genes is a strong predictor for recurrence of colorectal cancer, and suggest that CSC gene signatures, rather than reflecting CSC numbers, may reflect differentiation status of the malignant tissue.

390. PMID 18836996
Gene silencing by aberrant epigenetic chromatin alteration is a well-recognized event contributing to tumorigenesis. Although genetically engineered tumor-prone mouse models have proven a powerful tool in understanding many aspects of carcinogenesis, to date few studies have focused on epigenetic alterations in mouse tumors. To uncover epigenetically silenced tumor suppressor genes (TSGs) in mouse mammary tumor cells, we conducted initial genome-wide screening by combining the treatment of cultured cells with the DNA demethylating drug 5-aza-2'-deoxycytidine (5-azadC) and the histone deacetylase inhibitor trichostatin A (TSA) with expression microarray. By conducting this initial screen on EMT6 cells and applying protein function and genomic structure criteria to genes identified as upregulated in response to 5-azadC/TSA, we were able to identify two characterized breast cancer TSGs (Timp3 and Rprm) and four putative TSGs (Atp1B2, Dusp2, FoxJ1 and Smpd3) silenced in this line. By testing a panel of 10 mouse mammary tumor lines, we determined that each of these genes is commonly hypermethylated, albeit with varying frequency. Furthermore, by examining a panel of human breast tumor lines and primary tumors we observed that the human orthologs of ATP1B2, FOXJ1 and SMPD3 are aberrantly hypermethylated in the human disease whereas DUSP2 was not hypermethylated in primary breast tumors. Finally, we examined hypermethylation of several genes targeted for epigenetic silencing in human breast tumors in our panel of 10 mouse mammary tumor lines. We observed that the orthologs of Cdh1, RarB, Gstp1, RassF1 genes were hypermethylated, whereas neither Dapk1 nor Wif1 were aberrantly methylated in this panel of mouse tumor lines. From this study, we conclude that there is significant, but not absolute, overlap in the epigenome of human and mouse mammary tumors.

391. PMID 22139084
Genetic alterations of 16q21-q22, the locus of a 6-cadherin cluster, are frequently involved in multiple tumors, suggesting the presence of critical tumor suppressor genes (TSGs). Using 1?Mb array comparative genomic hybridization (aCGH), we refined a small hemizygous deletion (~1?Mb) at 16q21-22.1, which contains a single gene Cadherin-11 (CDH11, OB-cadherin). CDH11 was broadly expressed in human normal adult and fetal tissues, while its silencing and promoter CpG methylation were frequently detected in tumor cell lines, but not in immortalized normal epithelial cells. Aberrant methylation was also frequently detected in multiple primary tumors. CDH11 silencing could be reversed by pharmacologic or genetic demethylation, indicating an epigenetic mechanism. Ectopic expression of CDH11 strongly suppressed tumorigenecity and induced tumor cell apoptosis. Moreover, CDH11 was found to inhibit Wnt/ß-catenin and AKT/Rho A signaling, as well as actin stress fiber formation, thus further inhibiting tumor cell migration and invasion. CDH11 also inhibited epithelial-to-mesenchymal transition and downregulated stem cell markers. Thus, our work identifies CDH11 as a functional tumor suppressor and an important antagonist of Wnt/ß-catenin and AKT/Rho A signaling, with frequent epigenetic inactivation in common carcinomas.Oncogene advance online publication, 5 December 2011; doi:10.1038/onc.2011.541.

392. PMID 22233005
Genetic and epigenetic influences as well as dietary factors play an important role in the initiation and progression of cancer. More specifically, colorectal cancer (CRC) is influenced by dietary habits and it has been established that genetic and epigenetic changes are involved in the carcinogenesis. . Therefore the epigenetic is established as another way of carcinogenesis. Identify the factors that would predict the beginning of CRC is critical, as it is a rather silent disease which is observed clinically at an advanced stage.

393. PMID 22615066
Genetically heterogeneous imprinting disorders include Beckwith-Wiedemann syndrome (BWS) and multiple maternal hypomethylation syndrome (MMHS). Using DNA sequencing, quantitative PCR, SNuPE, pyrosequencing, and hybridization to the Illumina GoldenGate Methylation Cancer Panel 1 array, we characterized the genomic DNA of two brothers with BWS who were discordant for loss of methylation at several differentially methylated regions (DMR), including imprinting center 2 (IC2) on chromosome band 11p15.5, which is often hypomethylated in BWS. In keeping with MMHS, the elder child had hypomethylation of SGCE and PLAGL1 as well as of IC2, whereas the younger brother demonstrated no loss of methylation at these DMRs. Although this discordance is consistent with the observation that 15-20% of individuals with BWS do not have detectable genetic or epigenetic alterations of 11p15.5, this is the first report of familial recurrence of BWS with discordance for chromosomal 11p15.5 alterations. We hypothesize that this apparent discordance arises either from mosaicism precluding identification of IC2 hypomethylation in blood or buccal mucosa DNA of the younger child, or from hypomethylation at a site not interrogated by our molecular studies. © 2012 Wiley Periodicals, Inc.

394. PMID 21435086
Genome-wide hypomethylation has been confirmed in patients with primary immune thrombocytopenia (ITP). Proteins containing methylcytosine-binding domain (MBD) are involved in promoter methylation as transcriptional repressors and promote the gene-silencing effect of DNA methylation. The purpose of this study was to investigate the methylation pattern of T cells and the relationship between genomic methylation and the expression of MBD2 and MBD4 in ITP patients. DNA deoxymethylcytosine content of CD4(+) cells from peripheral blood mononuclear cells was measured by enzyme-linked immunoassay. Real-time polymerase chain reaction was performed to quantify the transcription levels of MBD2 and MBD4 in peripheral blood mononuclear cells and CD4(+) cells. DNA dmC content in CD4(+) cells of ITP patients was significantly lower than in the controls (p = 0.001). The mRNA level of MBD2 and MBD4 in CD4(+) cells of ITP patients was statistically lower than those of the controls (p < 0.001). Positive correlations between methylation indexes and expression of each enzyme were observed in the control group (r(2) = 0.718, p = 0.004 for MBD2; r(2) = 0.608, p = 0.015 for MBD4). However, inverse correlations were found in ITP patients (r(2) = 0.604, p = 0.008 for MBD2; r(2) = 0.498, p = 0.027 for MBD4). Our results indicate that decreased expression of MBD2 and MBD4 might involve in the pathogenesis of ITP.

395. PMID 18635238
Genomic alterations affecting chromosome arm 1q are considered to be an early event in breast carcinogenesis and are correlated with good prognosis for the patients. In the search for new breast cancer susceptibility genes, we focused on three genes from the Regulator of G protein Signaling family clustered on 1q25.3 within the HPC1 region. RGS16, RGSL2, and RGSL1 encode proteins interacting with G proteins and accelerating termination of the G protein signaling. To evaluate the implication of these genes in somatic breast cancer, we analyzed a 154-kb segment at 1q25.3 using allelic imbalance (AI) mapping. A panel of 222 patients diagnosed with primary breast cancer was analyzed using newly identified, intragenic short tandem repeats (STRs). A high rate of AI (>50%) was found across the region and led to the identification of internal chromosomal breakpoints. A detailed mapping of the breakpoints revealed intragenic microdeletions affecting the coding regions of RGSL2, RGSL1, and the regulatory region of RGS16. The promoter region of RGS16 was found to be methylated in 10% of the tumors. A decrease in the RGS16 expression was found in tumors with chromosomal breakpoints, AI, and aberrant methylation. We found a significant association between AI of RGSL2 and localized disease, which correlated with good prognosis for patients with breast cancer. In conclusion, we found the 1q25.3 region to be highly unstable in breast tumors comprising a cluster of chromosomal breakpoints, intragenic microdeletions, frequent allelic imbalance correlating with long metastasis-free survival, and RGS16 promoter methylation affecting the protein expression.

396. PMID 20861182
Genomic instability is an important factor in cancer susceptibility, but a mechanistic understanding of how it arises remains unclear. We examined hypothesized contributions of the replicative DNA polymerase d (pol d) subunit POLD4 to the generation of genomic instability in lung cancer. In examinations of 158 lung cancers and 5 mixtures of 10 normal lungs, cell cycle- and checkpoint-related genes generally showed mRNA expression increases in cancer, whereas POLD4 showed reduced mRNA in small cell lung cancer (SCLC). A fraction of non-small cell lung cancer patients also showed low expression comparable with that in SCLC, which was associated with poor prognosis. The lung cancer cell line ACC-LC-48 was found to have low POLD4 expression, with higher histone H3K9 methylation and lower acetylation in the POLD4 promoter, as compared with the A549 cell line with high POLD4 expression. In the absence of POLD4, pol d exhibited impaired in vitro DNA synthesis activity. Augmenting POLD4 expression in cells where it was attenuated altered the sensitivity to the chemical carcinogen 4-nitroquinoline-1-oxide. Conversely, siRNA-mediated reduction of POLD4 in cells with abundant expression resulted in a cell cycle delay, checkpoint activation, and an elevated frequency of chromosomal gap/break formation. Overexpression of an engineered POLD4 carrying silent mutations at the siRNA target site rescued these phenotypes, firmly establishing the role of POLD4 in these effects. Furthermore, POLD4 overexpression reduced intrinsically high induction of ?-H2AX, a well-accepted marker of double-stranded DNA breaks. Together, our findings suggest that reduced expression of POLD4 plays a role in genomic instability in lung cancer.

397. PMID 20711234
Genomic translocations have been implicated in cancer. In this study, we performed a screen for genetic translocations in gliomas based on exon-level expression profiles. We identified a translocation in the contactin-associated protein-like 2 (CASPR2) gene, encoding a cell adhesion molecule. CASPR2 mRNA was fused to an expressed sequence tag that likely is part of the nuclear receptor coactivator 1 gene. Despite high mRNA expression levels, no CASPR2 fusion protein was detected. In a set of 25 glioblastomas and 22 oligodendrogliomas, mutation analysis identified two additional samples with genetic alterations in the CASPR2 gene and all three identified genetic alterations are likely to reduce CASPR2 protein expression levels. Methylation of the CASPR2 gene was also observed in gliomas and glioma cell lines. CASPR2-overexpressing cells showed decreased proliferation rates, likely because of an increase in apoptosis. Moreover, high CASPR2 mRNA expression level is positively correlated with survival and is an independent prognostic factor. These results indicate that CASPR2 acts as a tumor suppressor gene in glioma.

398. PMID 22248280
Genomic, epigenetic and expression alterations of WW domain containing oxidoreductase (WWOX) have been implicated in multiple tumor types. The current study was designed to examine the expression of WWOX in tumor tissues of human bladder transitional cell carcinoma (BTCC) and the influence of cigarette smoke extract (CSE) on WWOX expression and methylation status in T-24 bladder cancer cells. WWOX protein expression was evaluated by immunohistochemistry staining in a?series of tumor samples from 78 patients with BTCC and 26 normal bladder tissues. The expression level and methylation status of WWOX in CSE-treated cells were examined by using quantitative Real-Time RT-PCR and methylation specific PCR, respectively. The expression levels of DNA methyltransferases (DNMTs) 1, 3A and 3B were also detected. We found that WWOX expression was absent or reduced in 79.5% (62/78) of BTCC tissues, but only in 19.2% (5/26) of normal bladder tissues. Loss of WWOX expression was correlated with tumor grade (P=0.019) and cigarette smoking (P=0.031), but was not associated with age, gender, tumor size and tumor number. Hypermethylation of WWOX promoter and exon 1 was specifically induced by CSE with a?kinetics concurrent to the suppression of WWOX mRNA in T-24 cells. Furthermore, CSE treatment induced a?significant time-dependent increase in the level of DNMT1, but has no effects on DNMT3A and DNMT3B. Taken together, these novel findings suggest that hypermethylation of WWOX induced by cigarette smoking may represent one underlying mechanism for the loss expression of WWOX in bladder cancer. Keywords: WWOX, bladder cancer, immunohistochemistry, cigarette smoking, DNA methylation.

399. PMID 18635238
Germline mutations in the mismatch repair genes mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2), MSH6, and postmeiotic segregation increased 2 (PMS2) lead to the development of hereditary nonpolyposis colorectal cancer (HNPCC). Diagnosis of HNPCC relies on the compilation of a thorough family history of cancer, documentation of pathological findings, tumor testing for microsatellite instability (MSI) and immunohistochemistry (IHC), and germline mutation analysis of the suspected genes. As a hallmark of HNPCC, microsatellite instability is widely accepted as a primary method for identifying individuals at risk for HNPCC. It serves as an excellent, easy-to-evaluate marker of mismatch repair deficiency. Recent improvements in MSI testing have significantly enhanced the accuracy and reduced its cost. Proficiency testing for MSI is available, and laboratory-to-laboratory reproducibility of such testing can be easily evaluated. In addition, the combination of microsatellite instability testing, MLH1 promoter methylation analysis, and BRAF (V600E) mutation analysis can distinguish a sporadic colorectal cancer from one associated with HNPCC, helping to avoid costly molecular genetic testing for germline mutations in mismatch repair genes. In this article, we discuss the development of MSI markers used for HNPCC screening and focus on the advantages and disadvantages of MSI testing in screening for HNPCC patients. We conclude that MSI is as sensitive and specific as IHC, given its excellent reproducibility and its potential capability to indicate mutations not be detected by IHC. MSI has been used and will continue to prevail as the primary screening tool for identifying HNPCC patients.

400. PMID 21102414
Gestational trophoblastic disease encompasses a spectrum of trophoblastic lesions including true neoplasms such as choriocarcinomas and the potentially malignant hydatidiform moles, which may develop persistent disease requiring chemotherapy. ASPP1, a member of apoptosis-stimulating proteins of p53 (ASPPs), is a proapoptotic protein that can stimulate apoptosis through its interaction with p53. We evaluated the promoter methylation and expression profiles of ASPP1 in different trophoblastic tissues and its in vitro functional effect on two choriocarcinoma cell lines, namely JEG-3 and JAR. Significant downregulation of ASPP1 mRNA and protein levels was demonstrated in hydatidiform moles and choriocarcinomas, when compared with normal placentas by quantitative-PCR and immunohistochemistry. The ASPP1 mRNA level was significantly correlated with its hypermethylation status, evaluated with methylation-specific PCR, in placenta and gestational trophoblastic disease samples (P=0.024). Moreover, lower ASPP1 immunoreactivity was shown in hydatidiform moles that progressed to persistent gestational trophoblastic neoplasms than in those that regressed (P=0.045). A significant correlation was also found between expression of ASPP1 and proliferative indices (assessed by Ki67 and MCM7), apoptotic activity (M30 CytoDeath antibody), p53 and caspase-8 immunoreactivities. An in vitro study showed that ectopic expression of ASPP1 could trigger apoptosis through intrinsic and extrinsic pathways as indicated by an increase in cleaved caspase-9 and Fas ligand protein expression. The latter suggests a hitherto unreported novel link between ASPP1 and the extrinsic pathway of apoptosis. Our findings suggest that downregulation of ASPP1 by hypermethylation may be involved in the pathogenesis and progress of gestational trophoblastic disease, probably through its effect on apoptosis.

401. PMID 20104524
Giant cell tumors are heterogeneous tumors consisting of multinucleated giant cells, fibroblast-like stromal cells and mononuclear histiocytes. The stromal cells have been identified as the neoplastic cell population, which promotes the recruitment of histiocytes and the formation of giant cells. Strong evidence exists that these cells develop from mesenchymal stem cells (MSCs) but little is known about the molecular mechanisms involved in GCT tumorigenesis. The aim of our study was the identification of cancer-related genes differentially expressed in GCTs compared to MSCs in order to identify possible targets for aberrant promoter methylation, which may contribute to MSC transformation and GCT development. Gene expression of 440 cancer-related genes was analyzed by DNA microarrays in GCT stromal cells and bone marrow-derived MSCs (BMSCs) isolated from the same patient (n = 3) to avoid interindividual variations. Differential expression was identified for 14 genes, which could be confirmed by quantitative PCR in further 21 GCT and 10 BMSC samples. The most pronounced difference in gene expression was detected for UCHL1, an important regulator of the ubiquitin proteasome pathway. Methylation-specific PCR and bisulfite sequencing revealed a strong methylation of the CpG island covering the UCHL1 promoter in GCT stromal cells, whereas methylation was completely absent in BMSCs. UCHL1 expression in stromal cells could be restored by the methylation inhibitor 5-aza-dC. These data demonstrate that the UCHL1 gene is inactivated in GCTs but not in MSCs, suggesting a possible role of UCHL1 in MSC transformation and GCT development.

402. PMID 21552306
Given strong evidence implicating an important role of altered microRNA expression in cancer initiation and progression, the genes responsible for microRNA biogenesis may also play a role in tumorigenesis. Exportin-5 (XPO5) is responsible for exporting pre-miRNAs through the nuclear membrane to the cytoplasm, and is thus critical in miRNA biogenesis. In the current study, we performed both genetic and epigenetic association studies of XPO5 in a case control study of breast cancer. We first genotyped two missense SNPs in XPO5, rs34324334 (S241N) and rs11544382 (M1115T), and further analyzed methylation levels in the XPO5 promoter region for blood DNA samples from a breast cancer case-control study. We found the variant genotypes of rs11544382 to be associated with breast cancer risk (OR=1.59, 95% CI: 1.06 -2.39), compared to the homozygous common genotype. When stratified by menopausal status, the variant alleles of both rs11544382 (OR=1.82, 95% CI: 1.09-3.03) and rs34324334 (OR=1.76, 95% CI: 1.10-2.83) were significantly associated with breast cancer risk in post-menopausal women. The methylation analysis showed that the "high" and combined "high/middle" tertiles of methylation index were associated with reduced risk of breast cancer (OR=0.34, 95% CI:0.15-0.81 and OR=0.47, 95% CI:0.24-0.94, respectively; P(trend)=0.015). These results were corroborated by data from a publicly available tissue array, which showed lower levels of XPO5 expression in healthy controls relative to tumor or adjacent tissues from breast cancer patients with tumor tissue exhibiting the highest expression levels. These findings support the hypothesis that variations in components of the miRNA biogenesis pathway, in this case XPO5, may affect an individual's risk of developing breast cancer.

403. PMID 22248913
Glaucoma is a leading cause of blindness worldwide. In primary open angle glaucoma (POAG) patients, impaired trabecular meshwork (TM) function results in elevated intraocular pressure (IOP), which is the primary risk factor of developing optic neuropathy. Our previous studies showed that Wnt signaling pathway components are expressed in the human TM (HTM), and the Wnt inhibitor, secreted frizzled-related protein 1 (SFRP1) is elevated in the glaucomatous TM (GTM). Elevated SFRP1 increased IOP in mice eyes and in perfusion cultured anterior segments of the human eye. However, the cause of elevated SFRP1 in the GTM remains unknown. Promoter methylation plays a key role in regulating SFRP1 expression in certain cancer cells. In light of this, we studied whether promoter methylation is also involved in SFRP1 differential expression in the TM. Two normal TM (NTM) and two GTM cell strains were cultured for an additional 7 days after they were confluent. RNA and genomic DNA (gDNA) were isolated simultaneously to compare SFRP1 expression levels by quantitative PCR (qPCR) and to determine SFRP1 promoter methylation status by bisulfite conversion and methylation-sensitive high resolution melting analysis (MS-HRM). To study whether DNA methylation inhibitors affect SFRP1 expression in TM cells, the four TM cell strains were treated with or without 2 µM 5-aza-2'-deoxycytidine (AZA-dC) for 4 days. RNA was isolated to compare SFRP1 expression by qPCR. In addition, a human cancer cell line, NCI-H460, was used as a positive control. We found that the two GTM cell strains had significantly higher expression levels of SFRP1 than the two NTM cell strains. However, the SFRP1 promoter of all four TM cell strains was unmethylated. In addition, AZA-dC treatment did not affect SFRP1 expression in any of the TM cell strains (n = 3, p > 0.05). In contrast, the hypermethylated SFRP1 promoter of NCI-H460 cells was partially demethylated by the same treatment. AZA-dC treatment also elevated SFRP1 expression by approximately two fold in NCI-H460 cells (n = 3, p < 0.01). Our data suggest that the differential expression of SFRP1 in HTM cells is not due to differential promoter methylation.

404. PMID 21075782
Glial fibrillary acidic protein (GFAP) is an intermediate filament expressed in glial cells that stabilizes and maintains the cytoskeleton of normal astrocytes. In glial tumors, GFAP expression is frequently lost with increasing grade of malignancy, suggesting that GFAP is important for maintaining glial cell morphology or regulating astrocytoma cell growth. Most permanent human glioma cell lines are GFAP negative by immunocytochemistry. Given that the GFAP gene is not mutated in human glioma specimens or glioma cell lines, we considered epigenetic mechanisms, such as promoter methylation, as a cause of silencing of GFAP in these tumors. In this study, we treated known GFAP-negative glioma cell lines with 5-aza-2'-deoxycytidine to examine GFAP promoter hypermethylation. Additionally, we performed bisulfite sequencing on primary glioma samples and glioma cell lines and showed an inverse relationship between GFAP promoter methylation status and GFAP expression. Using a gene reporter assay with the GFAP promoter cloned upstream of a luciferase gene, we showed that methylation of the GFAP promoter downregulates the expression of the luciferase gene. Our results suggest that epigenetic silencing of the GFAP gene through DNA methylation of its promoter region may be one mechanism by which GFAP is downregulated in human gliomas and glioma cell lines.

405. PMID 21928112
Glioblastoma (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by large and small alterations in genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes, either alone or in combination with genetic mechanisms. The current evidence suggests that hypermethylation of promoter CpG islands is a common epigenetic event in a variety of human cancers. A subset of GBMs is also characterized by a locus-specific and genome-wide decrease in DNA methylation. Epigenetic alterations are important in the molecular pathology of GBM. However, there are very limited data about these epigenetic alterations in GBM. Alterations in promoter methylations are important to understand because histone deacetylases are targets for drugs that are in clinical trial for GBMs. The aim of the current study was to investigate whether the promoter hypermethylation of putative tumor suppressor genes was involved in GBM. We examined the methylation status at the promoter regions of GATA6, MGMT, and FHIT using the methylation-specific polymerase chain reaction in 61 primary GBMs. Our results reveal that there is no promoter hypermethylation of FHIT in the examined GBM tissue specimens. In contrast, the promoter hypermethylation of GATA6 and MGMT was detected in 42.8 and 11.11% of GBMs, respectively. The frequency of MGMT promoter hypermethylation was low in the group of patients we evaluated. In conclusion, our study demonstrates that promoter hypermethylation of MGMT is a common event in GBMs, whereas GATA6 is epigenetically affected in GBMs. Furthermore, inactivation of FHIT by epigenetic mechanisms in GBM may not be associated with brain tumorigenesis.

406. PMID 20428822
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. The identification of novel molecular prognostic markers of GBM has recently been an area of great interest in neuro-oncology. The methylation status of the MGMT gene promoter is currently a promising molecular prognostic marker, but some controversial data have precluded its clinical use. We analyzed MGMT methylation by methylation-specific PCR in 90 GBM patients from four Portuguese hospitals, uniformly treated with radiotherapy combined with concomitant and adjuvant temozolomide (Stupp protocol). The Kaplan-Meier method was used to construct survival curves, and the log-rank test and a Cox-regression model were used to analyze patient survival. The methylation status of MGMT was successfully determined in 89% (80/90) of the tumors. The frequency of tumoral MGMT promoter methylation was 47.5%. The median overall survivals (OSs) were 16 months (95% CI 12.2-19.8) and 13 months (95% CI 13.3-18.7) for patients whose tumors had a methylated or unmethylated MGMT, respectively. Univariate and multivariate analyses did not show any statistically significant association between MGMT methylation status and patient OS (P=0.583 by the log-rank test; P=0.617 by the Cox-regression test) or progression-free survival (P=0.775 by the log-rank test; P=0.691 by the Cox-regression test). None of the patient clinical features were significantly correlated with survival. This is the first study to report the frequency of MGMT methylation among Portuguese GBM patients. Our data did not show statistically significant associations between MGMT promoter methylation and the outcome of GBM patients treated with temozolomide. Additional robust prospective studies are warranted to clarify whether the MGMT status should be used in clinical decisions.

407. PMID 22241217
Glioblastoma is universally fatal because of its propensity for rapid recurrence due to highly migratory tumor cells. Unraveling the genomic complexity that underlies this migratory characteristic could provide therapeutic targets that would greatly complement current surgical therapy. Using multiple high-resolution genomic screening methods, we identified a single locus, adherens junctional associated protein 1 (AJAP1) on chromosome 1p36 that is lost or epigenetically silenced in many glioblastomas. We found AJAP1 expression absent or reduced in 86% and 100% of primary glioblastoma tumors and cell lines, respectively, and the loss of expression correlates with AJAP1 methylation. Restoration of AJAP1 gene expression by transfection or demethylation agents results in decreased tumor cell migration in glioblastoma cell lines. This work shows the significant loss of expression of AJAP1 in glioblastoma and provides evidence of its role in the highly migratory characteristic of these tumors.

408. PMID 21653597
Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM.

409. PMID 22281465
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with an extremely poor prognosis in spite of multimodal treatment approaches. The median survival time of patients with GBM is 15 months, and only 3-5% of patients survive longer than 36 months. Those patients who survive over 36 months after the initial diagnosis are defined as long-term survivors. In this study, we retrospectively performed clinical and molecular analyses of five long-term survivors of GBM (>36 months) and twenty four GBM patients with poor survival time as control group (<36 months) to identify any prognostic factors that potentially contribute to survival. The O<sup>6</sup>-methylguanine-DNA methyltransferase (MGMT) gene methylation status was evaluated by performing methylation specific polymerase chain reaction assays. The mutation of isocitrate dehydrogenase 1 and 2 were evaluated by the direct sequencing method. All five cases were primary GBMs and the coexistence of the oligodendroglioma component was checked for each case as GBM with oligodendroglioma component. All five cases showed MGMT promoter methylation (5/5). IDH1 mutation was detected in two of the long-term survivors with oligodendroglioma component (2/5) while no IDH1 mutation was detected in the control group. All patients were treated by gross total removal followed by radiotherapy and various chemotherapies including temozolomide. MGMT promoter methylation and IDH1 mutation might be favorable factors for long-term survival in GBM patients.

410. PMID 22156195
Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O6-methylguanine-DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O6-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG), which repairs the cytotoxic lesions N³-methyladenine and N7-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.

411. PMID 21896932
Glioblastoma multiforme (GBM) is the most frequently occurring primary malignant brain tumor; patients with GBM often have a very poor prognosis and differing responses to treatment. Therefore, it is very important to find new biomarkers that can predict clinical outcomes and help in treatment decisions. MicroRNAs are small, non-coding RNAs that function as post-transcriptional regulators of gene expression and play a key role in the pathogenesis of GBM. In a group of 38 patients with primary GBM, we analyzed the expression of eight microRNAs (miR-21, miR-128a, miR-181c, miR-195, miR-196a, miR-196b, miR-221, and miR-222). In addition, we examined the methylation status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter by high-resolution melting analysis, as this has been shown to be a predictive marker in GBM. MGMT methylation status correlated with progression-free survival (P = 0.0201; log-rank test) as well as with overall survival (P = 0.0054; log-rank test). MiR-195 (P = 0.0124; log-rank test) and miR-196b (P = 0.0492; log-rank test) positively correlated with overall survival. Evaluation of miR-181c in combination with miR-21 predicted time to progression within 6 months of diagnosis with 92% sensitivity and 81% specificity (P < 0.0001). Our data confirmed that the methylation status of MGMT but also miR-21, miR-181c, miR-195, and miR-196b to be associated with survival of GBM patients. Above all, we suggest that the combination of miR-181c and miR-21 could be a very sensitive and specific test to identify patients at high risk of early progression after surgery.

412. PMID 22331317
Glioblastomas, which are the most common primary intracranial tumor, are associated with the poorest survival time, which is typically 1-2 years. Age at initial diagnosis, Karnofsky performance score, and O(6)-methylguanine DNA-methyltransferase (MGMT) promoter methylation status are the most well-documented predictors of survival in patients with newly diagnosed glioblastoma. Few studies have examined prognostic factors in patients with recurrent glioblastomas. At relapse, the pathological features of glioblastomas are affected by tumor regrowth and the influence of chemoradiotherapy during the initial treatment. Morphological transformations at recurrence include quantitative changes in tumor cells, such as the presence of giant cells and gemistocytic cell formation, radiation necrosis, and vascular structural changes. Therefore, we should carefully examine pathological findings at recurrence. In this report, we analyzed MGMT promoter status, the MIB-1 index, and the pathology of tumor samples at the first (primary tumor) and second (recurrent tumor) surgeries and clarified prognostic factors in patients with recurrent cases. In the multivariate analysis, we showed that MIB-1 indexes at the time of the second surgery (p = 0.004) persisted as a significant independent prognostic factor in survival of patients with recurrent glioblastoma.

413. PMID 18199537
Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through which GLIPR1 exerts its tumor suppressor functions, has not been shown. Here, we report that the expression of GLIPR1 is significantly reduced in human prostate tumor tissues compared with adjacent normal prostate tissues and in multiple human cancer cell lines. Overexpression of GLIPR1 in cancer cells leads to suppression of colony growth and induction of apoptosis. Mice with an inactivated Glipr1 gene had significantly shorter tumor-free survival times than either Glipr1(+/+) or Glipr1(+/-) mice in both p53(+/+) and p53(+/-) genetic backgrounds, owing to their development of a unique array of malignant tumors. Mechanistic analysis indicated that GLIPR1 up-regulation increases the production of reactive oxygen species (ROS) leading to apoptosis through activation of the c-Jun-NH(2) kinase (JNK) signaling cascade. Thus, our results identify GLIPR1 as a proapoptotic tumor suppressor acting through the ROS-JNK pathway and support the therapeutic potential for this protein.

414. PMID 21829728
Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4) have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ), and even low grade gliomas (LGGs, WHO grade 2) eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6)-methylguanine-DNA methyltransferase (MGMT) that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP) in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1) IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2) LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3) LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4) higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

415. PMID 20930513
Global DNA hypomethylation affecting repeat sequences has been reported in different cancer types. Herein, we investigated the methylation levels of repetitive DNA elements in chronic lymphocytic leukemia (CLL), their correlation with the major cytogenetic and molecular features, and clinical relevance in predicting therapy-free survival (TFS). A quantitative bisulfite-PCR Pyrosequencing method was used to evaluate methylation of Alu, long interspersed nuclear elements-1 (LINE-1) and satellite-? (SAT-?) sequences in 77 untreated early-stage (Binet A) CLL patients. Peripheral B-cells from 7 healthy donors were used as controls. Methylation levels (median %5mC) were lower in B-CLLs compared with controls (21.4 vs. 25.9; 66.8 vs. 85.7; 84.0, vs. 88.2 for Alu, LINE-1 and SAT-?, respectively) (p < 0.001). Among CLL patients, a significant association was observed with 17p13.1 deletion (16.8 vs. 22.4; 51.2 vs. 68.5; 52.6 vs. 85.0, for Alu, LINE-1 and SAT-?) but not with other major genetic lesions, IgVH mutation status, CD38 or ZAP-70 expression. Follow-up analyses showed that lower SAT-? methylation levels appeared to be an independent prognostic marker significantly associated with shorter TFS. Our study extended previous limited evidences in methylation of repetitive sequences in CLL suggesting an important biological and clinical relevance in the disease.

416. PMID 20930513
Global DNA hypomethylation affecting repeat sequences has been reported in different cancer types. Herein, we investigated the methylation levels of repetitive DNA elements in chronic lymphocytic leukemia (CLL), their correlation with the major cytogenetic and molecular features, and clinical relevance in predicting therapy-free survival (TFS). A quantitative bisulfite-PCR Pyrosequencing method was used to evaluate methylation of Alu, long interspersed nuclear elements-1 (LINE-1) and satellite-a (SAT-a) sequences in 77 untreated early-stage (Binet A) CLL patients. Peripheral B-cells from 7 healthy donors were used as controls. Methylation levels (median %5mC) were lower in B-CLLs compared with controls (21.4 vs. 25.9; 66.8 vs. 85.7; 84.0, vs. 88.2 for Alu, LINE-1 and SAT-a, respectively) (p < 0.001). Among CLL patients, a significant association was observed with 17p13.1 deletion (16.8 vs. 22.4; 51.2 vs. 68.5; 52.6 vs. 85.0, for Alu, LINE-1 and SAT-a) but not with other major genetic lesions, IgVH mutation status, CD38 or ZAP-70 expression. Follow-up analyses showed that lower SAT-a methylation levels appeared to be an independent prognostic marker significantly associated with shorter TFS. Our study extended previous limited evidences in methylation of repetitive sequences in CLL suggesting an important biological and clinical relevance in the disease.

417. PMID 21960343
Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC). A total of 315 HCC cases and 356 age-, sex- and HBsAg status-matched controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004, Wilcoxon rank-sum test). The odds ratios (ORs) of HCC for individuals in the third, second, and first (lowest) quartiles of LINE-1 methylation were 1.1 (95% confidence interval (CI) 0.7-1.8), 1.4 (95% CI 0.8-2.2), and 2.6 (95% CI 1.7-4.1) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 1.9-fold (95% CI 1.4-2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC. Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC.

418. PMID 22581841
Global DNA hypomethylation is associated with genomic instability and human cancer and blood DNAs collected at the time of cancer diagnosis have been used to examine the relationship between global methylation and cancer risk. To test the hypothesis that global hypomethylation is associated with increased risk of hepatocellular carcinoma (HCC), we conducted a prospective case-control study nested within a community-based cohort with 16 years of follow up. We measured methylation levels in Sat2 by MethyLight, and LINE-1 by pyrosequencing using baseline white blood cell (WBC) DNA from 305 HCC cases and 1254 matched controls. We found that Sat2 hypomethylation was associated with HCC risk (OR per 1 unit decrease in natural log Sat2 methylation=1.77, 95% CI=1.06-2.95). The association was significant among individuals diagnosed with HCC before age of 62 (OR per 1 unit decrease in natural log Sat2 methylation=2.47, 95%CI=1.06-5.73) but not after (OR 1.67, 95%CI=0.84-3.32). We did not observe an association of LINE-1 with HCC overall, or by age at diagnosis. Among carriers of HBsAg, with each 1 unit decrease in natural log Sat2 methylation level, the OR for HCC increased by 2.19 (95% CI=1.00-4.89). LINE-1 hypomethylation was associated with about a 2-fold increased risk of HCC, with ORs (95%CI) of 2.39 (1.06-5.39), 2.09 (0.91-4.77), and 2.28 (0.95-5.51, Ptrend=0.14) for HBsAg carriers in the 3rd, 2nd, and lowest quartile of LINE-1 methylation, respectively, compared with carriers in the 4th. These results suggest that global hypomethylation may be a useful biomarker of HCC susceptibility.

419. PMID 22678115
Global decreases in DNA methylation, particularly in repetitive elements, have been associated with genomic instability and human cancer. Emerging, though limited, data suggest that in white blood cell (WBC) DNA levels of methylation, overall or in repetitive elements, may be associated with cancer risk. We measured methylation levels of three repetitive elements (Sat2, LINE-1, and Alu) by MethyLight, and LINE-1 by pyrosequencing in a total of 282 breast cancer cases and 347 unaffected sisters from the New York site of the Breast Cancer Family Registry (BCFR) using DNA from both granulocytes and total WBC. We found that methylation levels in all markers were correlated between sisters (Spearman correlation coefficients ranged from 0.17 to 0.55). Sat2 methylation was statistically significantly associated with increased breast cancer risk (OR = 2.09, 95% CI = 1.09-4.03, for each unit decrease in the natural log of the methylation level, OR = 2.12, 95% CI =0.88-5.11 for the lowest quartile compared to the highest quartile). These associations were only observed in total WBC but not granulocyte DNA. There was no association between breast cancer and LINE-1 and Alu methylation. If replicated in larger, prospective studies, these findings support that selected markers of epigenetic changes measured in WBC such as Sat2 may be potential biomarkers of breast cancer risk.

420. PMID 21640426
Globins are respiratory proteins involved in oxygen metabolism, which is a critical factor in tumor growth and progression. The status of neuroglobin and myoglobin is largely unknown in human malignancies, including lung cancer. The aim of this study was to explore mRNA expression profiles, potential regulatory mechanisms and clinicopathological associations of neuroglobin and myoglobin in non-small cell lung cancer (NSCLC). We screened 208 surgically resected NSCLC specimens and a panel of lung normal and cancer cell lines. The mRNA expression of neuroglobin, myoglobin and hypoxia markers (HIF1a and VEGFa) was measured with qRTPCR, while neuroglobin promoter methylation was assessed with Pyrosequencing. Neuroglobin and myoglobin were upregulated in the tumor samples compared to normal tissue (p=1.3×10(-22) and p=1.9×10(-9), respectively). Neuroglobin was more frequently overexpressed in squamous cell carcinomas (SqCCL) than adenocarcinomas. Overexpression of myoglobin was more profound in adenocarcinomas, which correlated with poor survival (p=0.013). Neuroglobin promoter was hypermethylated in 30.8% of NSCLC cases, which correlated with neuroglobin mRNA downregulation. The epigenetic regulation of neuroglobin was confirmed by treating lung cell lines with 5'azadeoxycytidine and/or trichostatin A. Expression of both genes correlated with the expression of HIF1a (neuroglobin: p=3.8×10(-5), myoglobin: p=1.1×10(-11)). Myoglobin expression was also associated to that of VEGFa (p=2.1×10(-7)). Hypoxia-dependent upregulation of both globins was validated in vitro. In summary, neuroglobin and myoglobin overexpression in NSCLC is associated with histological subtype, hypoxia and, in case of neuroglobin - epigenetic regulation. Myoglobin expression may have potential significance in the prognostication of lung adenocarcinomas.

421. PMID 20391126
Glutathione S-transferases (GST) belong to a superfamily of phase II enzymes believed to be associated with enhanced frequency of esophageal carcinoma. This study was performed to evaluate whether the GST family was associated with susceptibility to esophageal carcinoma in China. Ninety-seven patients with newly diagnosed, untreated esophageal squamous-cell carcinoma (ESCC) and 97 healthy controls matched in age, gender, and residence were recruited in this community-based case-control study. Null genotypes of GSTM1 and GSTT1 were determined by multiplex polymerase chain reaction (PCR) technique. Ile105Val polymorphism in the fifth exon, mRNA level, CpG island hypermethylation of promoter, and protein levels of GSTP1 gene were measured with peripheral blood mononuclear cell (PBMC) by PCR-restriction fragment length polymorphism (PCR-RFLP) techniques, quantitative real-time reverse transcription PCR, methylation-specific PCR (MSP), and Western blotting, respectively. The results showed that GSTM1 null genotype and GSTT1 null genotype were significantly associated with increased risk for esophageal cancer in Chinese population. Compared with the control, the relative expression levels of mRNA were significantly reduced in ESCC patients. The conditional logistic regression analysis demonstrated that increased risk for esophageal cancer was associated with CpG island hypermethylation of promoter of GSTP1 gene. GSTP1 protein levels also showed significant decrease in ESCC when adjusted for age, gender, smoking status, and alcohol use. An individual with GSTM1 or GSTT1 null genotype may thus be more susceptible to esophageal cancer development. Reduced expression in mRNA and protein levels were the main manifestations noted in aberrant function of GSTP1 gene. Data thus suggest that the CpG island hypermethylation of promoter gene may serve as a useful biomarker for early diagnosis of esophageal carcinoma development.

422. PMID 21684681
Glutathione peroxidase 3 (GPx3), a plasma antioxidant enzyme, maintains genomic integrity by inactivating reactive oxygen species (ROS), known DNA-damaging agents and mediators of cancer chemotherapy response. In this study, we demonstrate that loss of GPx3 expression by promoter hypermethylation is frequently observed in a wide spectrum of human malignancies. Furthermore, GPx3 methylation correlates with head and neck cancer (HNC) chemoresistance and may serve as a potential prognostic indicator for HNC patients treated with cisplatin-based chemotherapy. Our findings support the hypothesis that defects in the antioxidant system may contribute to tumorigenesis of a wide spectrum of human malignancies. GPx3 methylation may have implications in chemotherapy response and clinical outcome of HNC patients.

423. PMID 21672320
H-cadherin (CDH13; also known as T-cadherin), which functions as a tumour suppressor, is frequently silenced by promoter methylation in human cancers including bladder transitional cell carcinoma (TCC). This study investigated the clinical significance of methylation of the CDH13 gene promoter in serum from patients with bladder TCC. Methylation status of CDH13 in serum samples from 127 patients with primary bladder TCC and 41 healthy volunteers (controls) was examined by methylation-specific polymerase chain reaction. CDH13 methylation was found in 39 patients with bladder TCC (30.7%) but in no controls. CDH13 methylation was significantly associated with advanced tumour stage, high-grade tumour, large tumour size, tumour recurrence and poor prognosis. The results suggested that CDH13 methylation in serum may be a potential predictive biomarker for malignancy in bladder TCC, and an independent pretherapeutic predictor of outcome. Demonstration of CDH13 methylation in serum may facilitate in the prediction of which patients require more aggressive additional post-operative systemic therapy.

424. PMID 21649464
H11/HspB8 is a functionally distinct small heat shock protein. It causes growth arrest in melanocytes, associated with the inhibition of Cyclin E/Cdk2 and ß-catenin phosphorylation at the transcriptional activity site Ser(552) and is silenced through DNA methylation in 27/35 (77%) melanoma tissues/early cultures. 5-Aza-2'-deoxycytidine (Aza-C) induces melanoma cell death correlated with the levels of H11/HspB8 DNA methylation (p < .001). In line with low/moderate H11/HspB8 methylation, PI3-K inhibition increases Aza-C-induced cell death. Aza-C inhibits the growth of melanoma xenografts related to the levels of H11/HspB8 methylation, and a nonmethylated/non-TAK1 binding H11/HspB8 mutant confers Aza-C resistance. H11/HspB8 is a potential molecular marker for demethylation therapies.

425. PMID 19268989
HIN-1 (High in normal-1) is a tumor suppressor gene that is highly expressed in many epithelial tissues, including breast lung, trachea, pancreas, prostrate and salivary gland. Inactivation of HIN-1 expression by promoter methylation is frequent in many epithelial carcinomas and carcinoma-in-situ, including breast, lung and nasopharyngeal. Because HIN-1 silencing commences at an early stage of malignant transformation in these tissues, it may be a useful marker for tumor presence. The status of HIN-1 regulation in esophageal cancer has not been previously reported. Thus, we analyzed 18 esophageal cancer cell lines for HIN-1 expression and methylation by reverse transcription PCR (RT-PCR) and methylation specific PCR (MSP). HIN-1 gene silencing and promoter methylation was present in 13 (72%) of the cell lines. Bisulfite-treated sequencing confirmed the methylation status in cell lines and demonstrated dense methylation of HIN-1 throughout the promoter region. Epigenetic changes of HIN-1 were examined throughout the progression of carcinogenesis in esophageal squamous lesions through analysis of archived surgical specimens from patients with normal esophageal mucosa (n = 17), grade I dysplasia (n = 39), grade II dysplasia (n = 12), grade III dysplasia (n = 9), and invasive squamous esophageal cancer (n = 126). Methylation of HIN-1 was present in 0% of normal mucosa, 31% of grade I dysplasia, 33% of grade II dysplasia, 44% of grade III dysplasia, and 50% of esophageal cancer specimens analyzed. These studies demonstrate HIN-1 silencing is associated with dense promoter region hypermethylation in esophageal cancer and suggest that methylation of HIN-1 is an early event in dysplastic transformation.

426. PMID 22425943
Hearing loss is the most common sensory disorder in humans. The newborn morbidity is 1/1000 approximately 3/1000. In most cases, the cause comes from abnormal development of inner-ear or degeneration of the cochlear hair cells. Genetic factors make a significant contribution to hearing impairment. Some genes and chromosome locus responsible for syndromic or non-syndromic hearing loss have been identified. However, etiology of deafness still remains obscure. In addition to some hot spot mutations (GJB2, SLC26A4, mitochondrial DNA C1494T, A1555G, etc.), epigenetics may also provide a significant contribution to this sensory disease. For example, miR-96 seed region mutations can result in progressive hearing loss in humans and mice, and aberrant CpG methylation has been linked to a few inherited syndromes that can induce hearing loss, etc.. This review aims to summarize the research progress of epigenetics in the fields of hearing and deafness.

427. PMID 21811259
Heat-shock protein 90 (Hsp90) inhibitor downregulates c-Myc expression and upregulates the expression of tumor repressor proteins such as p53 and pRB, inhibiting the G1/S transition and causing G2/M arrest during cell cycle progression. The cycle progression is extensively controlled by the pRB/E2F signaling pathway. E2F is released from the pRB/E2F complex with the phosphorylation of pRB by cyclin-cyclin-dependent kinase (CDK) complexes. The released E2F promotes the transcription of target genes involved in cell cycle progression. The pRB/E2F signaling pathway is controlled by DNA methyltransferase-1 (Dnmt-1). The elevated expression of Dnmt-1 has been reported in carcinomas of the colon, lung and prostate. A defect of pRB expression in Rb -/- cancer cells is caused by the aberrant methylation of CpG in the Rb promoter. The Hsp90 inhibitor disrupts the Dnmt-1/Hsp90 association and upregulates pRB expression. In this review, the Hsp90 inhibitors that show promise for cancer therapy are summarized.

428. PMID 20405297
Helicobacter pylori infection can induce aberrant CpG island hypermethylation in gastric mucosal epithelial cells. Single nucleotide polymorphisms of proinflammatory cytokine genes encoding for interleukin 1B (IL1B), IL6, and IL8 have been demonstrated to be associated with an increased risk of gastric cancer. To identify the influence of host genetic factors in CpG island hypermethylation induced by H. pylori infection, we analyzed H. pylori-infected chronic gastritis (n = 111) and gastric cancer samples (n = 78) for the methylation status of eight genes previously shown to be hypermethylated in chronic gastritis and single nucleotide polymorphisms of IL1B, IL6, and IL8. The methylation levels were then compared between different genotypes. Gastric cancers from patients with the IL1B-511T/T allele showed significantly higher methylation levels in five genes as compared with gastric cancers from IL1B-511 C carriers (P < 0.05). An increased level of hypermethylation in association with the IL1B-511T/T allele was observed in chronic gastritis samples, but the association was not statistically significant. These findings suggest that the IL1B-511T/T allele is associated with enhanced hypermethylation of multiple CpG island loci, which might contribute to an increase in the risk for gastric cancer in individuals with H. pylori infection and IL1B-511T/T allele.

429. PMID 21268132
Hepatocellular carcinoma (HCC) is one of the most common cancers world-wide but the molecular mechanisms that underlie hepatocarcinogenesis are not fully determined. On the same surgical sample with HCC, we performed microarray-based gene expression profiling and karyotype analysis using a single nucleotide polymorphism (SNP) array. In addition, quantitative real-time reverse transcription polymerase chain reaction (PCR), methylation specific PCR (MSP) and immunohistochemical staining were conducted using specimens from 48 patients with HCC. Gene expression profiling showed the expression of fibulin 1 (FBLN1), located on 22q13, to be decreased in tumor tissue. Karyotype analysis revealed no loss of heterozygosity (LOH) since deletions were not detected in 22q, and one of the SNPs on 22q13 showed AB genotype in both cancerous tissue and in corresponding noncancerous tissue, indicating retention of heterozygosity. Quantitative real-time PCR showed FBLN1 mRNA levels in cancerous tissues to be significantly decreased compared with that in corresponding noncancerous tissues. The immunohistochemical staining results were consistent with both gene expression profiling and quantitative PCR data. Twenty-four out of 48 HCCs gave a positive result in MSP. Moreover, promoter hypermethylation of FBLN1 was significantly associated with advanced stage HCC, multiple tumors and increased tumor size. Our results indicated that FBLN1 is a novel candidate of tumor suppressor gene and that promoter hypermethylation of FBLN1 is associated with tumor progression in HCC. © 2011 Wiley-Liss, Inc.

430. PMID 18351580
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Little is known about its molecular pathogenesis and the relevance of DNA methylation for disease initiation and progression. Nevertheless, promoter methylation of some genes has been implicated as potential marker for HCC. Thirty-four HCC, 34 matching non-malignant, cirrhotic livers and 16 normal livers were analyzed for the methylation status of the genes p16(INK4a), GSTP1, MGMT, DAP-K and APC by quantitative methylation-specific PCR. DNA promoter methylation frequencies in HCC and matching non-malignant cirrhotic liver, respectively, were as follows: p16(INK4a) (76% vs. 24%), GSTP1 (53% vs. 32%), MGMT (6 vs. 12%), DAP-K (68 vs. 100%) and APC (100 vs. 100%). GSTP1 and/or p16(INK4a) promoter methylation was observed in 88% of the HCC samples. In normal liver tissue, the p16(INK4a), GSTP1 and MGMT promoter were not methylated. DAP-K was methylated in 31% and APC even in 100% of normal liver samples. Quantitative levels of methylated promoter DNA of all genes were significantly different in the various tissue types except for MGMT. Our results suggest that promoter methylation of tumor-associated genes is a common event in hepatocarcinogenesis. Significantly, higher levels and frequencies of promoter methylation in HCC were found for p16(INK4a) and GSTP1 compared to non-malignant cirrhotic liver. This indicates that these epigenetic events may serve as a good marker for HCC. These data also demonstrate the importance of the quantification of methylated promoter DNA within a given sample and the use of normal tissue as controls. Quantitative analyses of methylated GSTP1 and p16(INK4a) promoter may serve as a powerful molecular marker in detecting HCC in biopsies.

431. PMID 18635238
Hepatocellular carcinoma (HCC) most commonly arises from chronic inflammation due to viral infection, as a result of genetic and epigenetic abnormalities. A global picture of epigenetic changes in HCC is lacking. We used methylated CpG island amplification microarrays (MCAMs) to study 6458 CpG islands in HCC and adjacent preneoplastic tissues [chronic hepatitis (CH) or liver cirrhosis (LC)] in comparison with normal liver tissues where neither viral infection nor hepatitis has existed. MCAM identified 719 (11%) prominent genes of hypermethylation in HCCs. HCCs arising from LC had significantly more methylation than those arising from CH (1249 genes or 19% versus 444 genes or 7%, P < 0.05). There were four patterns of aberrant methylation: Type I (4%, e.g. matrix metalloproteinase 14) shows a substantially high methylation level in adjacent tissue and does not increase further in cancer. Type II (55%, e.g. RASSF1A) shows progressively increasing methylation from adjacent tissue to HCC. Type III (4%, e.g. GNA14) shows decreased methylation in adjacent tissue but either similar or increased methylation in HCC. Type IV (37%, e.g. CDKN2A) shows low levels of methylation in normal tissue and adjacent tissue but high levels in HCC. These DNA methylation changes were confirmed by quantitative pyrosequencing methylation analysis in representative 24 genes and were analyzed for correlation with clinicopathological parameters in 38 patients. Intriguingly, methylation in the Type IV genes is characteristic of moderately/poorly differentiated cancer. Our global epigenome analysis reveals distinct patterns of methylation that are probably to represent different pathophysiologic processes in HCCs.

432. PMID 21261476
Here, we first evaluated SMARCA5 expression and promoter DNA methylation in gastric carcinogenesis. Immunohistochemistry and methylation-specific PCR were analyzed in 19 and 48 normal mucosa and in 52 and 92 gastric cancer samples, respectively. We observed higher immunoreactivity of SMARCA5 in gastric cancer samples than in normal mucosa. Moreover, SMARCA5 promoter methylation was associated with the absence of protein expression. Our findings suggest that SMARCA5 has a potential role in proliferation and malignancy in gastric carcinogenesis.

433. PMID 21635225
Here, we focus on epigenetic changes in leukaemia and MM (multiple myeloma) cells. We show how the histone signature, DNA methylation and levels of select tumour-suppressor proteins can be affected by inhibitors of HDACs (histone deacetylases) and Dnmts (DNA methyltransferases). Both inhibitors, TSA (trichostatin A) and 5-AZA (5-azacytidine), have the ability to change the histone signature in a tumour-specific manner. In MM cells, we observed changes in H3K4 methylation, while in leukaemia cells, H3K9 methylation was especially affected by select inhibitors. Compared with normal peripheral blood lymphocytes, tumour cell samples were characterized by increased H3K9 acetylation, increased H3K4me2, H3K9me2 and HP1a (heterochromatin protein 1a) levels and specific changes were also observed for DNA methylation. Additionally, we showed that the tumour suppressor pRb1 (retinoblastoma protein) is more sensitive to epigenetic-based anti-cancer stimuli than p53. We have found significant decrease in the levels of pRb1 and p53 in both myeloma and leukaemia cells after HDAC inhibition.

434. PMID 20354758
Here, we report the case of a patient with cerebellar high-grade glioma that developed after the patient underwent treatment for medulloblastoma. A 34-year-old man visited our hospital with complaints of dizziness and truncal ataxia. Magnetic resonance image showed a cerebellar tumor with multiple cavernomas and two lesions that were suspected to be meningiomas. The cerebellar tumor was surgically removed. According to pathological examination, the tumor was a high-grade glioma that was positive for methylated O-6-methylguanine-DNA methyltransferase promoter. In the past, he had received radiotherapy at the age of 5, after which he was operated for desmoplastic medulloblastoma in his right cerebellar hemisphere. Seven years after the initial therapy, cavernoma-induced intracerebral hemorrhage of the right temporal lobe was noted. To our knowledge, this is the first case of radiation-induced double intracranial tumors accompanied by symptomatic cavernoma.

435. PMID 18223333
Herein, we describe the clinical, pathologic, immunohistochemical, and molecular features of 3 unique patients with long standing inflammatory bowel disease, all of whom developed numerous discrete hyperplastic/serrated colonic polyps similar to those described in the hyperplastic/serrated polyposis syndrome. The 3 patients (2 with ulcerative colitis and 1 with Crohn ileo-colitis) were evaluated for a variety of clinical, histologic (including the type, location and number of polyps in the colon), and immunohistochemical features [MLH-1, MSH-2, MGMT (O(6)-methylguanine-DNA methyltransferase), beta-catenin, and p53]. KRAS and BRAF mutation analysis was also performed on a subset of polyps from 2 patients. All patients had moderate-severe pancolitis of more than 10 years duration and had >20 colonic polyps. None had polyps in the upper gastrointestinal tract. Pathologically, a combination of conventional hyperplastic polyps and sessile serrated polyps (adenomas) were present in the 3 cases. In addition, serrated adenomas were present in 2 and conventional adenomas in 1. Two patients also had synchronous adenocarcinoma. All 3 cases showed retention of MLH-1 and MSH-2, and a membranous beta-catenin staining pattern. However, 2 cases showed loss of MGMT in several serrated polyps, and one also in adjacent colitic mucosa. KRAS mutations were detected in 5/11 serrated polyps. However, BRAF mutations were not present in any of the polyps tested. These findings suggest the possibility of a serrated pathway of carcinogenesis in inflammatory bowel disease characterized by silencing of MGMT, most likely by gene promoter methylation, KRAS mutations, and possibly other, as yet, uncharacterized molecular alterations, resulting eventually in progression to adenocarcinoma.

436. PMID 20388775
Heritable germline epimutations in MSH2 have been reported in a few Lynch syndrome families that lacked germline mutations in the MSH2 gene. It is not known whether somatic MSH2 methylation occurs in MSH2 mutation-positive Lynch syndrome subjects or sporadic colorectal cancers (CRC). Therefore, we determined the methylation status of the MSH2 gene in 268 CRC tissues, including 222 sporadic CRCs and 46 Lynch syndrome tumors that did not express MSH2. We also looked for microsatellite instability (MSI), germline mutations in the MSH2 and EpCAM genes, somatic mutations in BRAF and KRAS, and the CpG island methylator phenotype (CIMP). We observed that somatic MSH2 hypermethylation was present in 24% (11 of 46) of MSH2-deficient (presumed Lynch syndrome) tumors, whereas no evidence for MSH2 methylation existed in sporadic CRCs (MSI and microsatellite stable) or normal colonic tissues. Seven of 11 (63%) patients with MSH2 methylation harbored simultaneous pathogenic germline mutations in the MSH2 gene. Germline EpCAM deletions were present in three of four patients with MSH2 methylation but without pathogenic MSH2 germline mutations. The mean methylation scores at CIMP-related markers were significantly higher in Lynch syndrome tumors with MSH2 methylation than MSH2-unmethylated CRCs. In conclusion, our data provide evidence for frequent MSH2 hypermethylation in Lynch syndrome tumors with MSH2 deficiency. MSH2 methylation in this subset of individuals is somatic and may serve as the "second hit" at the wild-type allele. High levels of aberrant methylation at CIMP-related markers in MSH2-methylated tumors raise the possibility that MSH2 is a target susceptible to aberrant methylation in Lynch syndrome.

437. PMID 20695923
Heterochromatinization has been implicated in fundamental biological and pathological processes including differentiation, senescence, ageing and tumourigenesis; however, little is known about its regulation and roles in human cells and tissues in vivo. ; n=26) lesions and a series of overt germ cell tumours, including seminomas (n=26), embryonal carcinomas (n=18) and teratomas (n=11). Among striking findings were high levels of HP1? in foetal gonocytes, CIS and seminomas; enhanced multimarker heterochromatinization without DDR activation in CIS; and enhanced HP1a in teratoma structures with epithelial and neuronal differentiation. Differential expression of the three heterochromatin markers suggests their partly non-overlapping roles, and separation of heterochromatinization from DDR activation highlights distinct responses of germ cells vs. somatic tissues in early tumourigenesis. Conceptually interesting findings were that subsets of human cells in vivo proliferate despite enhanced heterochromatinization, and that cells can strongly express even multiple heterochromatin features in the absence of functional retinoblastoma protein and without DDR activation. Overall, these results provide novel insights into cell-related and tumour-related diversity of heterochromatin in human tissues in vivo, relevant for andrology and intrinsic anti-tumour defence roles attributed to activated DDR and cellular senescence.

438. PMID 21364322
Heterogeneous DNA methylation leads to difficulties in accurate detection and quantification of methylation. Methylation-sensitive high resolution melting (MS-HRM) is unique among regularly used methods for DNA methylation analysis in that heterogeneous methylation can be readily identified, although not quantified, by inspection of the melting curves. Bisulfite pyrosequencing has been used to estimate the level of heterogeneous methylation by quantifying methylation levels present at individual CpG dinucleotides. Sequentially combining the two methodologies using MS-HRM to screen the amplification products prior to bisulfite pyrosequencing would be advantageous. This would not only replace the quality control step using agarose gel analysis prior to the pyrosequencing step but would also provide important qualitative information in its own right. We chose to analyze DAPK1 as it is an important tumor suppressor gene frequently heterogeneously methylated in a number of malignancies, including chronic lymphocytic leukemia (CLL). A region of the DAPK1 promoter was analyzed in ten CLL samples by MS-HRM. By using a biotinylated primer, bisulfite pyrosequencing could be used to directly analyze the samples. MS-HRM revealed the presence of various extents of heterogeneous DAPK1 methylation in all CLL samples. Further analysis of the biotinylated MS-HRM products by bisulfite pyrosequencing provided quantitative information for each CpG dinucleotide analyzed, and confirmed the presence of heterogeneous DNA methylation. Whereas each method could be used individually, MS-HRM and bisulfite pyrosequencing provided complementary information for the assessment of heterogeneous methylation.

439. PMID 17965727
High expression of CD30 and JunB is the hallmark of malignant cells in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL). Ligand-independent signaling by CD30 induces JunB, which activates the CD30 promoter, stabilizing CD30 expression and supporting the survival of Hodgkin-Reed-Sternberg (H-RS) and ALCL cells. Here we show for the first time CpG islands encompassing 60 CpG dinucleotides, located in the core promoter, exon 1 and intron 1 of CD30 gene. Analysis of the methylation status of CD30 CpG islands in H-RS, ALCL and unrelated cell lines reveals an inverse relationship between the extent of CD30 CpG methylation and CD30 expression. CD30 CpG islands of H-RS and ALCL cell lines are rarely methylated. Methylation of the CD30 promoter decreases CD30 induction and JunB action on the demethylated CD30 promoter enhances CD30 induction. CD30 and JunB are strongly expressed in H-RS and ALCL cells, whereas they are not expressed in nonmalignant lymphocytes in which CD30 CpG islands are rarely methylated. We conclude that constitutive action of aberrantly expressed JunB on hypomethylated CD30 CpG islands of lymphocytes triggers CD30 induction and initiates activation of the JunB-CD30-JunB loop, essential to the pathogenesis of HL and ALCL.

440. PMID 21109978
High expression of insulin-like growth factor-II (IGF-II) in epithelial ovarian cancer is associated with aggressive disease and poor prognosis. IGF-II transcription is initiated from multiple promoters. Promoter-specific expression is regulated by DNA methylation, which is often dysregulated in cancer. Here, the effects of promoter-specific methylation on IGF-II expression are investigated in ovarian cancer. Fresh tumor samples were collected from 211 patients for analyses of IGF-II promoter methylation using methylation-specific PCR, and of promoter-specific expression of IGF-II mRNA with qRT-PCR, as well as tissue levels of IGF-II peptide with an ELISA. Cox regression analysis was performed to assess IGF-II methylation and expression in association with progression-free and overall survival. DNA methylation was high in IGF-II promoters 2 (P2, 64.2%) and 3 (P3, 52.1%) and low in promoter 4 (P4, 9.8%). High methylation was associated with low mRNA expression in a promoter-specific manner. P3 methylation and expression appeared to be critical in ovarian cancer compared to other promoters. While methylation in an individual promoter was not associated with the disease, a methylation pattern involving P2 and P3 was significantly different among patients with distinct tumor grade, debulking results, residual tumor size and treatment response. The methylation pattern was also associated with disease progression. The study suggests that DNA methylation regulates IGF-II promoter-specific expression in ovarian cancer and the regulation may play a role in disease progression. Assessing methylation patterns in IGF-II promoters may have clinical implications.

441. PMID 22419126
High-density lipoproteins cholesterol (HDL-C) level, a strong coronary artery disease (CAD) clinical biomarker, shows significant interindividual variability. However, the molecular mechanisms involved remain mostly unknown. ATP-binding cassette A1 (ABCA1) catalyzes the cholesterol transfer from peripheral cells to nascent HDL particles. Recently, a differentially methylation region was identified in ABCA1 gene promoter locus, near the first exon. Therefore, we hypothesized that DNA methylation changes at ABCA1 gene locus is one of the molecular mechanisms involved in HDL-C interindividual variability. The study was conducted in familial hypercholesterolemia (FH), a monogenic disorder associated with a high risk of CAD . Ninety-seven FH patients (all p.W66G for the LDLR gene mutation and not under lipid-lowering treatment) were recruited and finely phenotyped for DNA methylation analyses at ABCA1 gene locus. ABCA1 DNA methylation levels were found negatively correlated with circulating HDL-C (r = -0.20; p = 0.05), HDL2-phospholipid levels (r = -0.43; p = 0.04), and with a trend for association with HDL peak particle size (r = -0.38; p = 0.08). ABCA1 DNA methylation levels were also found associated with prior history of CAD (CAD = 40.2% vs. without CAD = 34.3%; p = 0.003). These results suggest that epigenetic changes within the ABCA1 gene promoter contribute to the interindividual variability in plasma HDL-C concentrations and are associated with CAD expression. These findings could change our understanding of the molecular mechanisms involved in the pathophysiological processes leading to CAD.

442. PMID 21726646
Highly proliferating cells, normal or transformed, undergo aerobic glycolysis whereby glucose is metabolized to lactate rather than by oxidative metabolism, even in the presence of oxygen. This metabolic adaptation provides a survival advantage and facilitates synthesis of biosynthetic precursors required for continued cellular proliferation. An important mediator of aerobic glycolysis is our demonstration that in malignant gliomas there is over-expression of the glycolytic enzyme hexokinase 2 (HK2), phosphorylating glucose as the first step of the glycolytic pathway. In contrast, normal brain preferentially expresses HK1 and undergoes oxidative glucose metabolism. In this study, we examine whether this switch in HK isoform also occurs in the developing embryo and central nervous system (CNS). Bioinformatic analysis of available microarray data, including that of The Cancer Genome Atlas, demonstrated a ~17% overlap in metabolic-related genes in blastocyst stage embryo and human GBM tissue, including upregulation of HK2 and downregulation of HK1. Quantitative RT-PCR on mouse brains isolated at different embryonic and postnatal development time-points demonstrated HK2 expression was highest in the early embryo, while HK1 expression increased with CNS maturation. The downstream glycolytic enzymes PKM2 and LDHA had similar temporal profiles as HK2. Expression of the HK2 isoform was due in part to epigenetic regulation of HK2. In support, adult normal human brain and the few human GBM cell lines with low HK2 expression had methylation of CpG islands within intron 1 of HK2. In contrast, developing human fetal brain and GBM tissue expressing HK2 demonstrated significantly lower percent methylation. Furthermore, treatment of GBM cells lacking HK2 with 5-aza-2-deoxycytidine restored HK2 transcript expression. Overall, our results demonstrate that proliferative states including the developing embryo and malignant gliomas, which rely on aerobic glycolysis, preferentially express the HK2 isoform, found to be regulated in part epigenetically.

443. PMID 20339522
Histone deacetylase (HDAC) inhibitors have shown significant activity in the treatment of cutaneous T-cell lymphomas (CTCL). The epigenetic alterations of CTCL not only are limited to altered histone acetylation but also include aberrant DNA gene methylation hence, the combination of an HDAC inhibitor with a DNA demethylating agent is a promising therapy to be tested. Here we report a mycosis fungoides patient having a dramatic response to hydralazine and valproate, two repositioned drugs as HDAC and DNA methylation inhibitors, respectively.

444. PMID 20208542
Histone lysine methylation is dynamically regulated by lysine methyltransferases and lysine demethylases. Here we show that PHD finger protein 8 (PHF8), a protein containing a PHD finger and a Jumonji C (JmjC) domain, is associated with hypomethylated rRNA genes (rDNA). PHF8 interacts with the RNA polymerase I transcription machinery and with WD repeat-containing protein 5 (WDR5)-containing H3K4 methyltransferase complexes. PHF8 exerts a positive effect on rDNA transcription, with transcriptional activation requiring both the JmjC domain and the PHD finger. PHF8 demethylates H3K9me1/2, and its catalytic activity is stimulated by adjacent H3K4me3. A point mutation within the JmjC domain that is linked to mental retardation with cleft lip and palate (XLMR-CL/P) abolishes demethylase activity and transcriptional activation. Though further work is needed to unravel the contribution of PHF8 activity to mental retardation and cleft lip/palate, our results reveal a functional interplay between H3K4 methylation and H3K9me1/2 demethylation, linking dynamic histone methylation to rDNA transcription and neural disease.

445. PMID 21975933
Histone modification determines epigenetic patterns of gene expression with methylation of histone H3 at lysine 4 (H3K4) often associated with active promoters. LSD1/KDM1 is a histone demethylase that suppresses gene expression by converting dimethylated H3K4 to mono- and unmethylated H3K4. LSD1 is essential for metazoan development, but its pathophysiologic functions in cancer remain mainly uncharacterized. In this study, we developed specific bioactive small inhibitors of LSD1 that enhance H3K4 methylation and derepress epigenetically suppressed genes in vivo. Strikingly, these compounds inhibited the proliferation of pluripotent cancer cells including teratocarcinoma, embryonic carcinoma, and seminoma or embryonic stem cells that express the stem cell markers Oct4 and Sox2 while displaying minimum growth-inhibitory effects on non-pluripotent cancer or normal somatic cells. RNA interference-mediated knockdown of LSD1 expression phenocopied these effects, confirming the specificity of small molecules and further establishing the high degree of sensitivity and selectivity of pluripotent cancer cells to LSD1 ablation. In support of these results, we found that LSD1 protein level is highly elevated in pluripotent cancer cells and in human testicular seminoma tissues that express Oct4. Using these novel chemical inhibitors as probes, our findings establish LSD1 and histone H3K4 methylation as essential cancer-selective epigenetic targets in cancer cells that have pluripotent stem cell properties.

446. PMID 22211105
Histone modifications are thought to control the regulation of genetic programs in normal physiology and cancer. Methylation (mono-, di-, and tri-methylation) on histone H3 lysine (K) 27 induces transcriptional repression, and thereby participates in controlling gene expression patterns. Enhancer of zeste (EZH) 2, a methyltransferase and component of the polycomb repressive complex 2 (PRC2), plays an essential role in the epigenetic maintenance of the H3K27me3 repressive chromatin mark. Abnormal EZH2 expression has been associated with various cancers including breast cancer. Here, we discuss the contribution of EZH2 and the PRC2 complex in controlling the H3K27 methylation status and subsequent consequences on genomic instability and the cell cycle in breast cancer cells. We also discuss distinct molecular mechanisms used by EZH2 to suppress BRCA1 functions.

447. PMID 21303649
Holocarboxylase synthetase (HCS) is a chromatin protein that is essential for mediating the covalent binding of biotin to histones. Biotinylation of histones plays crucial roles in the repression of genes and repeats in the human genome. We tested the feasibility of DNA adenine methyltransferase identification (DamID) technology to map HCS binding sites in human mammary cell lines. Full-length HCS was fused to DNA adenine methyltransferase (Dam) for subsequent transfection into breast cancer (MCF-7) and normal breast (MCF-10A) cells. HCS docking sites in chromatin were identified by using the unique adenine methylation sites established by Dam in the fusion construct; docking sites were unambiguously identified using methylation-sensitive digestion, cloning, and sequencing. In total, 15 novel HCS binding sites were identified in the two cell lines, and the following 4 of the 15 overlapped between MCF-7 and MCF-10A cells: inositol polyphosphate-5-phosphatase A, corticotropin hormone precursor, ribosome biogenesis regulatory protein, and leptin precursor. We conclude that DamID is a useful technology to map HCS binding sites in human chromatin and propose that the entire set of HCS binding sites could be mapped by combining DamID with microarray technology.

448. PMID 22160393
Homeobox D10 (HoxD10 ) gene plays a critical role in cell differentiation and morphogenesis during development. However, the function of HoxD10 in tumor progression remains largely unknown. We demonstrate that the expression of HoxD10 is commonly downregulated in gastric cancer tissues (n = 33) and cell lines (n = 8) relative to normal stomach tissues. Functionally, reexpression of HoxD10 results in significant inhibition of cell survival, induction of cell apoptosis, and impairment of cell migration and invasion. Moreover, ectopic expression of HoxD10 suppresses gastric tumor growth in a mouse xenograft model. To identify target candidates of HoxD10, we performed cDNA microarray and showed that HoxD10 regulates multiple downstream genes including IGFBP3. Reintroduction of HoxD10 transcriptionally upregulates IGFBP3, activates caspase 3 and caspase 8, and subsequently induces cell apoptosis. Methylation specific PCR revealed that HoxD10 promoter DNA was hypermethylated in gastric cancer cell lines. Additionally, 5-aza demethylation treatment could transiently reactivate the expression of HoxD10 in gastric cancer cells. HoxD10 promoter methylation frequently was detected in gastric cancer tissues obtained from endoscopic biopsies (85.7%, 24/28) and surgically resected samples (82.6%, 57/69). Intestinal metaplasia tissues showed a 60% methylation rate (18/30), but no detectable methylation in normal stomach tissues (0%, 0/10). Taken together, our results suggest that HoxD10 functions as a candidate tumor suppressor in gastric cancer, which is inactivated through promoter hypermethylation.

449. PMID 21242958
Host cell and bacterial factors determine severity and duration of infections. To allow for bacteria pathogenicity and persistence, bacteria have developed mechanisms that modify expression of host genes involved in cell cycle progression, apoptosis, differentiation and the immune response. Recently, Helicobacter pylori infection of the stomach has been correlated with epigenetic changes in the host genome. To identify epigenetic changes during Escherichia coli induced urinary tract infection (UTI), we developed an in vitro model of persistent infection of human uroepithelial cells with uropathogenic E. coli (UPEC), resulting in intracellular bacteria colonies. Cells inoculated with FimH-negative E. coli (N-UPEC) that are not internalized and non-inoculated cells were used as controls. UPEC infection significantly induced de novo methyltransferase (DNMT) activity (12.5-fold P=0.002 UPEC vs non-inoculated and 250-fold P=0.001 UPEC vs N-UPEC inoculated cells) and Dnmt1 RNA expression (6-fold P=0.04 UPEC vs non-inoculated cells) compared with controls. DNMT1 protein levels were significantly increased in three uroepithelial cell lines (5637, J82, HT-1197) in response to UPEC infection as demonstrated by confocal analysis. Real-time PCR analysis of candidate genes previously associated with bacteria infection and/or innate immunity, revealed UPEC-induced downregulation of the tumor suppressor gene CDKN2A (3.3-fold P=0.007 UPEC vs non-inoculated and 3.3-fold P=0.001 UPEC vs N-UPEC) and the DNA repair gene MGMT (9-fold P=0.03 UPEC vs non-inoculated). Expression of CDH1, MLH1, DAPK1 and TLR4 was not affected. Pyrosequencing of CDKN2A and MGMT CpG islands revealed increased methylation in CDKN2A exon 1 (3.8-fold P=0.04 UPEC vs N-UPEC and UPEC vs non-inoculated). Methylation of MGMT was not affected. UPEC-induced methylation of CDKN2A exon 1 may increase bladder cancer and presage UTI risk, and be useful as a biological marker for UTI susceptibility or recurrence.

450. PMID 20444901
Human T-lymphotropic virus 1 (HTLV-1) causes an aggressive malignancy of T lymphocytes called adult T-cell leukemia/lymphoma (ATLL), and expression of HTLV-1 Tax influences cell survival, proliferation, and genomic stability in the infected T lymphocytes. Cyclin-dependent kinase inhibitor 1A (CDKN1A/p21(waf1/Cip1)) is upregulated by Tax, without perturbation of cell cycle control. During an analysis of the gene expression profiles of ATLL cells, we found very low expression of CDKN1A in ATLL-derived cell lines and ATLL cells from patient samples, and epigenetic abnormalities including promoter methylation are one of the mechanisms for the low CDKN1A expression in ATLL cells. Three HTLV-1-infected cell lines showed high levels of expression of both CDKN1A and Tax, but expression of CDKN1A was detected in only two of six ATLL-derived cell lines. In both the HTLV-1-infected and ATLL cell lines, we found that activated Akt phosphorylates CDKN1A at threonine 145 (T145), leading to cytoplasmic localization of CDKNIA. In HTLV-1-infected cell lines, cytoplasmic CDKN1A did not inhibit the cell cycle after UV irradiation; however, following treatment with LY294002, a PI3K inhibitor, CDKN1A was dephosphorylated and relocalized to the nucleus, resulting in suppression of the cell cycle. In the ATLL cell lines, treatment with LY294002 did not inhibit the cell cycle but induced apoptosis with the cytoplasmic localization. Therefore, the low CDKN1A expression in ATLL cells may be a key player in ATLL leukemogenesis, and the abnormal genomic methylation may influence the expression of not only HTLV-1 Tax but also CDKN1A during long-term development of ATLL from the HTLV-1-infected T lymphocytes.

451. PMID 18723128
Human systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies to nuclear components with subsequent immune complex formation and deposition in multiple organs. A combination of genetic and environmental factors is required for disease development, but how the environment interacts with the immune system in genetically predisposed hosts to cause lupus is unclear. Recent evidence suggests that environmental agents may alter T cell chromatin structure and gene expression through effects on DNA methylation, a repressive epigenetic mechanism promoting chromatin inactivation, to cause lupus in people with the appropriate genetic background. DNA methylation is regulated by ERK pathway signaling, and abnormalities in ERK pathway signaling may contribute to immune dysfunction in lupus through epigenetic effects on gene expression. This article reviews current evidence for epigenetic abnormalities, and in particular DNA demethylation, in the pathogenesis of idiopathic and some forms of drug-induced lupus, and how impaired ERK pathway signaling may contribute to the development of human lupus through effects on T cell DNA methylation.

452. PMID 22052167
Human tissue factor pathway inhibitor-2 (TFPI-2) has been implicated as a metastasis-associated gene in many types of tumors. In this study, we investigated whether TFPI-2 was inactivated epigenetically in pediatric acute myeloid leukemia (AML). Methylation status was investigated by methylation-specific polymerase chain reaction and bisulfate genomic sequencing. TFPI-2 was aberrantly methylated in 50% (3/6) of AML cell lines. Aberrant methylation of TFPI-2 promoter was detected in 71.6% (48/67) of the Chinese pediatric AML patients. TFPI-2 transcript was significantly lower in AML group compared with controls (3.44 vs. 32.8, P<0.001). Patients with methylated TFPI-2 gene had significantly lower TFPI-2 transcript than those patients without methylated TFPI-2 (P=0.04). Promoter hypermethylation of TFPI-2 is frequent and specific event in pediatric AML.

453. PMID 21282187
Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF--cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF--cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF-cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF--cohesin binding sites surrounding the locus. In normal cells, lack of CTCF--cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF--cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively.

454. PMID 22136354
Hypermethylated genomic DNA is a common feature in tumoral tissues, although the prevalence of this modification remains poorly understood. We aimed to determine the frequency of five tumor suppressor (TS) genes in prostate cancer and the correlation between promoter hypermethylation of these genes and low and high grade of prostate carcinomas. A total of 30 prostate tumor specimens were investigated for promoter methylation status of TS hypermethylated in cancer 1 (HIC1), death-associated protein kinase 1 (DAPK1), secreted frizzled-related protein 2 (SFRP2), cyclin-dependent kinase inhibitor 2A (p16), and O-6-methylguanine-DNA methyltransferase (MGMT) genes by using bisulfite modifying method. A high frequency of promoter hypermethylation was found in HIC1 (70.9%), SFRP2 (58.3%), and DAPK1 (33.3%) genes in tumor samples that were examined. The current data show high frequency of hypermethylation changes in HIC1, SFRP2, and DAPK1 genes in prostate carcinomas of high Gleason Score (GS).

455. PMID 21435086
Hypermethylation at the promoter region is an important epigenetic mechanism underlying the inactivation of tumor suppressor genes and frequently occurs as an early event in the development of different types of cancer including colorectal carcinoma (CRC). The aim of the present study is the detection of methylation status for some tumor suppressor genes including RASSF1A, MGMT, and HIC-1 in both cancerous and precancerous lesions of colorectal mucosa to evaluate the possibility of developing epigenetic biomarker for early detection of Egyptian CRC. Tissue biopsy was collected from 72 patients (36 CRC, 17 adenomatous polyps, and 19 ulcerative colitis), and in addition, adjacent normal-appearing tissues were collected as control. Promoter hypermethylation status for RSSAF1A, MGMT, and HIC-1 genes was detected after isolation of genomic DNA from the tissues samples using methylation-specific PCR technique. High frequency of methylation at MGMT, RASSFA, and HIC-1 was detected in CRC patients (25%, 47.2%, and 41.7% respectively). The highest methylation detected in adenomatous polyps patients was in MGMT gene (47.1%) followed by 35.3% for HIC-1 and only 5.9% for RASSF1A gene. HIC-1 gene exhibited highest frequency of methylation in ulcerative colitis patients (57.8%) whereas it was 26.3% for both RASSF1A and MGMT genes. A nonsignificant association was recorded between the methylation status in different genes examined with the clinicopathological factors except the association between methylation at RASSF1A gene with gender (p=0.005), and it was significant. In conclusion, aberrant hypermethylation at promoter region of RASSFA, MGMT, and HIC-1 genes is involved in Egyptian CRCs. Hypermethylation of MGMT and HIC-1 genes plays an important role in the initiation of disease especially ulcerative colitis-carcinoma pathway.

456. PMID 21264540
Hypermethylation has been shown in the promoter region of the endothelin receptor B (EDNRB) gene in several human tumors. However, its role in gastric cancer formation is still unclear. In this study, the methylation status of the EDNRB gene in paired gastric cancer tissues and adjacent normal tissues from 96 patients was detected quantitatively using pyrosequencing. The results showed the methylation of promoter of EDNRB gene in gastric cancer (50.42 ± 9.03%) was significantly higher than in adjacent normal tissues (6.47 ± 2.98%) (P <; 0.01). Among 96 tumor tissues, promoter hypermethylation of the EDNRB gene was correlated with tumor infiltration (T1: 47.4 ± 7.31% T2:48.2 ± 9.17% T3:52.9 ± 6.48% T4:53.2 ± 10.45%), lymph node metastasis (N0:45.4 ± 6.99% N1:49.0 ± 9.10% N2:52.0 ± 8.40% N3:53.7 ± 9.92%), and distant metastasis (M0:48.9 ± 6.99% M1:53.9 ± 11.98%) (P < 0.05), but it was not associated with other clinicopathological characteristics. In addition, the treatment of the human gastric cancer cell line, SGC-7901, with demethylation agent can restore the expression of EDNRB. Our results suggest that promoter hypermethylation of EDNRB gene is highly prevalent in gastric cancer, which may play a role in the pathogenesis of gastric cancer. Futhermore, hypermethylation of EDNRB gene was remarkably related to infiltration and metastasis of gastric cancer and may attribute to the tumor progression.

457. PMID 22428052
Hypermethylation in the promoter region of the MGMT gene encoding the DNA repair protein O(6)-methylguanine-DNA methyltransferase is among the most important prognostic factors for patients with glioblastoma and predicts response to treatment with alkylating agents like temozolomide. Hence, the MGMT status is widely determined in most clinical trials and frequently requested in routine diagnostics of glioblastoma. Since various different techniques are available for MGMT promoter methylation analysis, a generally accepted consensus as to the most suitable diagnostic method remains an unmet need. Here, we assessed methylation-specific polymerase chain reaction (MSP) as a qualitative and semi-quantitative method, pyrosequencing (PSQ) as a quantitative method, and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a semi-quantitative method in a series of 35 formalin-fixed, paraffin-embedded glioblastoma tissues derived from patients treated in a prospective clinical phase II trial that tested up-front chemoradiotherapy with dose-intensified temozolomide (UKT-05). Our goal was to determine which of these three diagnostic methods provides the most accurate prediction of progression-free survival (PFS). The MGMT promoter methylation status was assessable by each method in almost all cases (n?=?33/35 for MSP; n?=?35/35 for PSQ; n?=?34/35 for MS-MLPA). We were able to calculate significant cut-points for the continuous methylation signals at each CpG site analysed by PSQ (range, 11.5 to 44.9%) and at one CpG site assessed by MS-MLPA (3.6%) indicating that a dichotomisation of continuous methylation data as a prerequisite for comparative survival analyses is feasible. Our results show that, unlike MS-MLPA, MSP and PSQ provide a significant improvement of predicting PFS compared with established clinical prognostic factors alone (likelihood ratio tests: p<0.001). Conclusively, taking into consideration prognostic value, cost effectiveness and ease of use, we recommend pyrosequencing for analyses of MGMT promoter methylation in high-throughput settings and MSP for clinical routine diagnostics with low sample numbers.

458. PMID 20593220
Hypermethylation of the MGMT gene promoter and mutation of the TP53 tumor-suppressor gene are frequently present in diffuse astrocytomas. However, there is only anecdotal information about MGMT methylation status and TP53 mutations during progression of low-grade diffuse astrocytoma (AII) to anaplastic astrocytoma (AIII) and secondary glioblastoma (sGB). In this study biopsy specimens from 51 patients with astrocytic tumors with radiologically proved progression from low to high-grade malignancy were investigated for the presence and consistency of MGMT promoter hypermethylation and TP53 mutations. For 27 patients biopsy samples both of primary tumors and their recurrences were available. For the other 24 patients histology of either the low-grade lesion or the high-grade recurrence was available. It was found that MGMT promoter hypermethylation and TP53 mutations are both frequent and early events in the progression of astrocytomas and that their status is consistent over time. No correlation was found between MGMT methylation status and the presence of TP53 mutations. In addition, no correlation was found between MGMT promoter hypermethylation and the type of TP53 mutations. These results argue against the putative TP53 G:C>A:T transition mutations suggested to occur preferentially in MGMT hypermethylated tumors.

459. PMID 20150378
Hypermethylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) gene has been shown to be associated with improved outcome in glioblastoma (GBM) and may be a predictive marker of sensitivity to alkylating agents. However, the predictive utility of this marker has not been rigorously tested with regard to sensitivity to other therapies, namely radiation. To address this issue, we assessed MGMT methylation status in a cohort of patients with GBM who underwent radiation treatment but did not receive chemotherapy as a component of adjuvant treatment. Formalin-fixed, paraffin-embedded tumor samples from 225 patients with newly diagnosed GBM were analyzed via methylation-specific, quantitative real-time polymerase chain reaction following bisulfite treatment on isolated DNA to assess MGMT promoter methylation status. In patients who received radiotherapy alone following resection, methylation of the MGMT promoter correlated with an improved response to radiotherapy. Unmethylated tumors were twice as likely to progress during radiation treatment. The median time interval between resection and tumor progression of unmethylated tumors was also nearly half that of methylated tumors. Promoter methylation was also found to confer improved overall survival in patients who did not receive adjuvant alkylating chemotherapy. Multivariable analysis demonstrated that methylation status was independent of age, Karnofsky performance score, and extent of resection as a predictor of time to progression and overall survival. Our data suggest that MGMT promoter methylation appears to be a predictive biomarker of radiation response. Since this biomarker has also been shown to predict response to alkylating agents, perhaps MGMT promoter methylation represents a general, favorable prognostic factor in GBM.

460. PMID 21896932
Hypermethylation of the O6-MGMT, p14ARF, p16INK4a, RASSF1A and APC1A genes are unfavourable prognostic markers in colorectal cancer (CRC). We hypothesized that they could be related to prognosis also in cervical cancer. Methylation was studied in DNA extracts from surgical specimens of cancer tissue by novel pyrosequencing methods. In 109 patients (90 squamous cell carcinomas, 19 adenocarcinomas), we found that hypermethylation of the APC1A gene promoter occurred in 8.3% of patients, and of p16INK4a in 1.8%. APC1A hypermethylation was significantly related to more advanced FIGO stage of the tumor (P=0.013), larger tumor diameter (P=0.049) and distant recurrence-free survival (P=0.0007), but not with locoregional recurrence rate, age, HPV status, DNA ploidy, tumor grade or malignancy grading score. We conclude that methylation of the APC1A promoter in cervical cancer, as diagnosed by pyrosequencing, is significantly related to major biological characteristics of the tumor, and may be a new predictor of poor prognosis in cervical cancer.

461. PMID 20927134
Hypermethylation of the distal CEBPA promoter region has been reported to result in the downregulation of CEBPA expression in several malignancies. However, the clinical implication of CEBPA hypermethylation in acute myeloid leukemia (AML) remains unclear. To investigate the correlation between CEBPA hypermethylation and clinical features in AML, quantitative MassARRAY analyses for CEBPA methylation status were performed on a cohort of 193 patients. High CEBPA methylation group (CEBPA(high-meth), n=28) and low methylation group (CEBPA(low-meth), n=165) were defined by using two-way hierarchical clustering. With a median follow-up of 48 months, among the 125 patients receiving standard induction therapy, CEBPA(high-meth) was associated with better treatment response (complete remission rate 93.3% versus 73.6%, P=0.116). In patients with normal karyotype and without CEBPA and NPM1 mutations, the CEBPA(high-meth) had longer overall survival (OS) than the CEBPA(low-meth) (P=0.028). Multivariate analysis further supported that the CEBPA methylation was an independent prognostic factor for disease free-survival (hazard ratio=0.416; 95% confidence interval, 0.223-0.777, P=0.006) and OS (hazard ratio=0.406; 95% confidence interval, 0.166-0.996, P=0.050). We conclude that CEBPA methylation status is a useful prognostic biomarker for AML patients.

462. PMID 20890077
Hypermethylation of the homeobox (HOX) gene promoter leads to decreased expression of the gene during tumor development and is thought to be correlated with the clinical outcome in leukemia. In this study, we performed pyrosequencing to quantify the methylation level of HOXA5 genes in the bone marrow samples obtained from 50 patients with AML and 19 normal controls. The methylation percentage of HOXA5 in AML patients (median=65.4%, interquartile range=35.9-72.3%) was higher than that of HOXA5 in control patients (median=43.1%, interquartile range=36.7-49.6%, Mann-Whitney U test, P=0.012). The patients of the AML group who had a high methylation percentage (>70%) had a good prognosis with a 3-yr overall survival (OS) of 82.5%, whereas the patients with a low methylation percentage (=70%) showed a 3-yr OS of 40.5% (P=0.048). Cox proportional hazards regression showed that the methylation percentages of HOXA5 were independently associated with the 3-yr OS of AML patients, regardless of their karyotypes. We propose that the quantification of HOXA5 methylation by pyrosequencing may be useful for predicting short-term prognosis in AML. However, the limitations of our study are the small sample size and its preliminary nature. Thus, a larger study should be performed to clearly determine the relationships among HOXA5 methylation levels, cytogenetics, and prognosis in AML patients.

463. PMID 22073196
Hypermethylation of the promoter of the tumor suppressor gene, adenomatous polyposis coli (APC), occurs in various malignancies, including hepatocellular carcinoma (HCC). However, reports on the specificity of the methylation of the APC gene for HCC have varied. To gain insight into how these variations occur, bisulfite PCR sequencing was performed to analyze the methylation status of both sense and antisense strands of the APC gene in samples of HCC tissue, matched adjacent non-HCC liver tissue, hepatitis, cirrhosis, and normal liver tissues. DNA derived from fetal liver and 12 nonhepatic normal tissue was also examined. These experiments revealed liver-specific, antisense strand-biased CpG methylation of the APC gene and suggested that, although methylation of the antisense strand of the APC gene exists in normal liver and other non-HCC disease liver tissue, methylation of the sense strand of the APC gene occurs predominantly in HCC. To determine the effect of the DNA strand on the specificity of the methylated APC gene as a biomarker for HCC detection, quantitative methylation-specific PCR assays for sense and antisense strand DNA were developed and performed on DNA isolated from HCC (n?=?58), matched adjacent non-HCC (n?=?58), cirrhosis (n?=?41), and hepatitis (n?=?39). Receiver operating characteristic curves were constructed. With the cutoff value set at the limit of detection, the specificity of sense and antisense strand methylation was 84% and 43%, respectively, and sensitivity was 67.2% and 72.4%, respectively. This result demonstrated that the identity of the methylated DNA strand impacted the specificity of APC for HCC detection.

464. PMID 22218684
. The aim of the present study was to establish the role of the methylation status of the p16 gene in 114 CRC cases and to correlate it with the various clinicopathological parameters. Analysis of p16 promoter methylation was performed by methylation-specific PCR. Forty-eight (42.1%) of the CRC cases were found to be methylated for the p16 gene in our population. The methylation status was found to be associated with the gender, lymph node status, tumour stage, smoking status and tumour grade of the CRC patients. p16 plays a pivotal role in tumour development and progression to advanced stages.

465. PMID 21081840
Hypermethylation of the promoter region of tumor-related genes (TRGs) has been shown to silence gene expression during melanoma progression, whereas microRNA-29(miR-29) has been found to downregulate DNA methyltransferases DNMT3A and DNMT3B which were shown as essential to the methylation of TRGs. We hypothesized that the expression level of miR-29 is associated to TRG methylation status and may have prognostic utility in melanoma. AJCC stage I-IV cutaneous melanoma paraffin-embedded archival tissue (PEAT) specimens (n=149) were assessed. Expression of miR-29 isoforms a, b, and c were analyzed by reverse-transcription quantitative real-time polymerase chain reaction(RT-qPCR). Expression of DNMT3A and DNMT3B was assessed by immunohistochemistry(IHC) on defined clinically annotated tissue microarrays (TMA) of AJCC stage III melanoma lymph node metastases. Promoter region CpG island methylation status of RASSF1A, TFPI-2, RAR-?, SOCS, GATA4 and genomic repeat sequence MINT17 and MINT31 were previously evaluated in melanoma tissues. Only miR-29c isoform expression was correlated to advancing AJCC stages in melanoma. miR-29c expression was significantly downregulated in AJCC stage IV melanoma tumors compared to primary melanomas. Hypermethylation status of TRGs and non-coding MINT loci in different stages of melanoma showed an inverse association with miR-29c expression. Overall, an increase in miR-29c expression inversely correlated to both DNMT3A and DNMT3B protein expression in melanomas. Expression of DNMT3B and miR-29c were significantly (p=0.004 and p=0.002, respectively) associated with overall survival(OS) in AJCC stage III melanoma patients by multivariate analysis. The studies demonstrated that both miR-29c and DNMT3B have significant roles in melanoma progression, and may be useful epigenetic biomarkers for disease outcome.

466. PMID 21081840
Hypermethylation of the promoter region of tumor-related genes (TRGs) has been shown to silence gene expression during melanoma progression, whereas microRNA-29(miR-29) has been found to downregulate DNA methyltransferases DNMT3A and DNMT3B which were shown as essential to the methylation of TRGs. We hypothesized that the expression level of miR-29 is associated to TRG methylation status and may have prognostic utility in melanoma. AJCC stage I-IV cutaneous melanoma paraffin-embedded archival tissue (PEAT) specimens (n=149) were assessed. Expression of miR-29 isoforms a, b, and c were analyzed by reverse-transcription quantitative real-time polymerase chain reaction(RT-qPCR). Expression of DNMT3A and DNMT3B was assessed by immunohistochemistry(IHC) on defined clinically annotated tissue microarrays (TMA) of AJCC stage III melanoma lymph node metastases. Promoter region CpG island methylation status of RASSF1A, TFPI-2, RAR-ß, SOCS, GATA4 and genomic repeat sequence MINT17 and MINT31 were previously evaluated in melanoma tissues. Only miR-29c isoform expression was correlated to advancing AJCC stages in melanoma. miR-29c expression was significantly downregulated in AJCC stage IV melanoma tumors compared to primary melanomas. Hypermethylation status of TRGs and non-coding MINT loci in different stages of melanoma showed an inverse association with miR-29c expression. Overall, an increase in miR-29c expression inversely correlated to both DNMT3A and DNMT3B protein expression in melanomas. Expression of DNMT3B and miR-29c were significantly (p=0.004 and p=0.002, respectively) associated with overall survival(OS) in AJCC stage III melanoma patients by multivariate analysis. The studies demonstrated that both miR-29c and DNMT3B have significant roles in melanoma progression, and may be useful epigenetic biomarkers for disease outcome.

467. PMID 21641392
Hyperplastic polyposis syndrome (HPS) is characterized by the presence of multiple colorectal serrated polyps and is associated with an increased colorectal cancer (CRC) risk. The mixture of distinct precursor lesion types and malignancies in HPS provides a unique model to study the canonical pathway and a proposed serrated CRC pathway in humans. To establish which CRC pathways play a role in HPS and to obtain new support for the serrated CRC pathway, we assessed the molecular characteristics of polyps (n = 84) and CRCs (n = 19) in 17 patients with HPS versus control groups of various sporadic polyps (n = 59) and sporadic microsatellite-stable CRCs (n = 16). In HPS and sporadic polyps, APC mutations were exclusively identified in adenomas, whereas BRAF mutations were confined to serrated polyps. Six of 19 HPS CRCs (32%) were identified in a serrated polyp. Mutation analysis performed in the CRC and the serrated component of these lesions showed identical BRAF mutations. One HPS CRC was located in an adenoma, both components harboring an identical APC mutation. Overall, 10 of 19 HPS CRCs (53%) carried a BRAF mutation versus none in control group CRCs (P = 0.001). Six BRAF-mutated HPS CRCs (60%) were microsatellite unstable owing to MLH1 methylation. These findings provide novel supporting evidence for the existence of a predominant serrated CRC pathway in HPS, generating microsatellite-stable and microsatellite-instable CRCs.

468. PMID 22287060
Hypoxia is known to play important roles in the development and progression of tumors. We previously demonstrated that S100A4, a critical molecule for metastasis, was upregulated in ovarian cancer cells. Therefore, we examined the mechanisms of the upregulation of S100A4 expression in ovarian carcinoma cells, with particular attention paid to the effects of hypoxia. The expression levels of S100A4 were found to be correlated with the invasiveness of ovarian carcinoma cells in vitro and in vivo, and the upregulation of S100A4 expression was associated with hypomethylation of CpG sites in the first intron of S100A4 in ovarian carcinoma cell lines and tissues. The expression of S100A4 was increased under hypoxia and was associated with elevated invasiveness, which was inhibited by S100A4 small interfering RNA (siRNA). In addition, exposure to hypoxia reduced the methylation of hypoxia-response elements (HRE) of the S100A4 gene in a time-dependent fashion, in association with the increased binding of HIF-1a to a methylation-free HRE in ovarian carcinoma cells. These results indicate that hypoxia-induced hypomethylation plays an essential role in S100A4 overexpression and the epigenetic transformation of ovarian carcinoma cells into the "metastatic phenotype."

469. PMID 21251613
IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of a-ketoglutarate (a-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple a-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as a-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce a-KG and accumulate an a-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.

470. PMID 22424783
IDO1 can be induced by interferon gamma (IFN-?) in multiple cell types. We have earlier described that the DNA methyltransferase inhibitor zebularine also induces IDO1 in several rat cell clones. We now describe a synergistic induction of IDO1 expression by IFN-? and zebularine. To elucidate the mechanism of the IDO1 induction we have studied the methylation status in the promoter region of the IDO1 gene from both human monocytic THP-1 cells and H1D2 rat colon cancer cells. Interestingly, the IDO1 promoter is hypermethylated and IFN-? is shown to induce a significant demethylation. The synergism in effect of zebularine and IFN-? on IDO1 expression is paralleled by a similar synergistic effect on expression of two other IFN-?-responsive genes, the transcription factors STAT1 and IRF1 with binding sites in the IDO1 promoter region. The demonstrated synergistic activation of IDO1 expression has implications in relation to therapeutic induction of immunosuppression in autoimmunity and chronic inflammation.

471. PMID 21487040
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.

472. PMID 20357812
IGF-binding protein-3 (IGFBP3) is a member of the IGFBP family, which regulates mitogenic and antiapoptotic effects of IGFs. In this report we evaluated the role of IGFBP3 in melanoma. Quantitative real-time PCR (qRT-PCR), western blot, and ELISA analyses indicated a significant downregulation of IGFBP3 expression in melanoma cell lines as compared with a normal melanocyte cell line. Melanoma cell lines treated with the demethylating agent 5-AZA-2'-deoxycytidine reexpressed IGFBP3 at the mRNA and protein levels. Chromatin immunoprecipitation assays revealed enrichment of acetylated histones H3 and H4, and H3 di- and tri-methylated lysine 4 on the unmethylated IGFBP3 promoter. The IGFBP3 promoter region was highly methylated in human melanoma samples as compared with normal nevi. Overexpression of IGFBP3 in melanoma cells in vitro suppressed tumor cell survival, induced apoptosis, reduced colony formation and invasion, and induced expression of the proapoptotic genes p21, PUMA, and BAX. IGFBP3 overexpression also resulted in cleavage of caspase 3 and reduced expression of phosphorylated AKT. Stable overexpression of IGFBP3 suppressed tumor cell growth in vivo. Our study results indicate that silencing of IGFBP3 in melanoma is due to the methylation of its promoter, and that overexpression of IGFBP3 induces apoptosis and suppresses cell survival and growth.

473. PMID 21976679
IL-2 is a key cytokine during proliferation and activation of T lymphocytes and functions as an auto- and paracrine growth factor. Regardless of activating effects on T lymphocytes, the absence of IL-2 has been linked to the development of autoimmune pathology in mice and humans. Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease and characterized by dysregulation of lymphocyte function, transcription factor and cytokine expression, and antigen presentation. Reduced IL-2 expression is a hallmark of SLE T lymphocytes and results in decreased numbers of regulatory T lymphocytes which play an important role in preventing autoimmunity. Reduced IL-2 expression was linked to overproduction of the transcription regulatory factor cAMP-responsive element modulator (CREM)? in SLE T lymphocytes and subsequent CREM? binding to a CRE site within the IL2 promoter (-180 CRE). In this study, we demonstrate the involvement of CREM?-mediated IL2 silencing in T lymphocytes from SLE patients through a gene-wide histone deacetylase 1-directed deacetylation of histone H3K18 and DNA methyltransferase 3a-directed cytosine phosphate guanosine (CpG)-DNA hypermethylation. For the first time, we provide direct evidence that CREM? mediates silencing of the IL2 gene in SLE T cells though histone deacetylation and CpG-DNA methylation.

474. PMID 21976679
IL-2 is a key cytokine during proliferation and activation of T lymphocytes and functions as an auto- and paracrine growth factor. Regardless of activating effects on T lymphocytes, the absence of IL-2 has been linked to the development of autoimmune pathology in mice and humans. Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease and characterized by dysregulation of lymphocyte function, transcription factor and cytokine expression, and antigen presentation. Reduced IL-2 expression is a hallmark of SLE T lymphocytes and results in decreased numbers of regulatory T lymphocytes which play an important role in preventing autoimmunity. Reduced IL-2 expression was linked to overproduction of the transcription regulatory factor cAMP-responsive element modulator (CREM)a in SLE T lymphocytes and subsequent CREMa binding to a CRE site within the IL2 promoter (-180 CRE). In this study, we demonstrate the involvement of CREMa-mediated IL2 silencing in T lymphocytes from SLE patients through a gene-wide histone deacetylase 1-directed deacetylation of histone H3K18 and DNA methyltransferase 3a-directed cytosine phosphate guanosine (CpG)-DNA hypermethylation. For the first time, we provide direct evidence that CREMa mediates silencing of the IL2 gene in SLE T cells though histone deacetylation and CpG-DNA methylation.

475. PMID 21723258
Identification and characterization of epigenetically silenced genes is important for cancer research, because information from hypermethylated genes provides clues to understand roles of epigenetics in tumorigeneses and genes frequently methylated in a tumor-specific manner can be used as tumor markers. Here, we describe the identification of transcriptionally silenced hypermethylated genes in pancreatic cancer cells by using a novel method called "microarray coupled with methyl-CpG targeted transcriptional activation" (MeTA-array for short), which can effectively reactivate genes containing the stringent criteria of CpG islands at promoter regions. Three representative pancreatic cancer cell lines, AsPC-1, MIA PaCa-2 and PANC-1, with a normal pancreatic ductal epithelial cell line HPDE as a control, were examined with this method, and 19 genes were upregulated twofold or more in all the three cancer cell lines after MeTA; 16 of these 19 genes have not been detected previously when using a conventional DNA demethylating agent, 5-aza-2'-deoxycytidine. Among these 16 genes, CSMD2, SLC32A1, TMEM204 and TRH were further analyzed by methylation-specific PCR, and we found that 90% (19/21) of CSMD2, 100% (21/21) of SLC32A1, 95% (20/21) of TMEM204 and 100% (21/21) of TRH were methylated in our series of pancreatic cancer cell lines. Furthermore, CSMD2, SLC32A1 and TRH were also hypermethylated in primary pancreatic cancers in a tumor-specific manner. These results suggest that MeTA-array is a highly efficient method for identifying methylation-mediated transcriptionally silenced genes in human pancreatic cancer and that this method can be applied to other types of human cancer.

476. PMID 22664866
Identification of methylation-silenced genes in colorectal cancer (CRC) is of great importance. We employed oligonucleotide microarrays to identify differences in global gene expression of five CRC cell lines (HCT116, RKO, Colo320, SW480 and HT29) that were analyzed before and after treatment with 5-aza-2'-deoxycitidine. Selected candidates were subjected to methylation-specific PCR and real-time quantitative reverse transcription-PCR using 15 CRC cell lines and 23 paired tumor and normal samples from CRC patients. After 5-aza-2'-deoxycitidine treatment, 139 genes were re-expressed in all 5 CRC cell lines collectively with a fold change of more than 1.5 in at least one cell line. These genes include known methylated and silenced genes in CRC. After applying study selection criteria we identified 20 candidates. The GADD45B and THSD1 genes were selected for further analysis. Among 15 colon cancer cell lines, methylation was only identified in THSD1 (27%). THSD1 methy-lation was subsequently investigated in 23 colorectal tumors and methylation was detected in 9% of the analyzed samples; the observed promoter hypermethylation was cancer-specific. THSD1 mRNA down-regulation was observed in tumor tissues. This genome-wide screening led to the identification of genes putatively affected by methylation in CRC. The THSD1 gene may play a role in the tumorigenesis of CRC.

477. PMID 20178104
Identification of the molecular characteristics of intramucosal (IMCs) and submucosal cancers (SMCs) is essential to our understanding of early gastric carcinogenesis. However, little is known regarding the differences between the 2 lesions. One hundred and forty-eight patients with primary early gastric cancer [IMC, 106; SMC, 42] were characterized for expression of cell cycle-related proteins and loss of heterozygosity (LOH). We also examined microsatellite instability (MSI) and methylation status. For LOH and methylation studies, we used a panel of 17 microsatellite markers (3p, 4p, 5q, 9p. 13q, 17p, 18q and 22q) and promoter regions of 9 genes (MLH-1, RUNX3, p16, HPP1, RASSF2A, SFRP1, DKK-1, ZFP64 and SALL4) that are frequently altered or methylated in gastric cancers. Overexpression of p53 and cyclin D1 was observed in SMC. In addition, low expression of p27 was more frequent in SMC than in IMC. Frequencies of 4p, 9p, 13q and 22q were significantly higher in SMC than in IMC. The SALL4 gene was frequently methylated in SMC compared with IMC. However, other gene methylations were common in both IMC and SMC. The frequency of LOH-high status/methylation-low status was significantly higher in SMC than in IMC. However, LOH-low status/methylation-high status in SMC was more frequently found in IMC. Our data confirm that methylation of cancer-related genes plays a major role in the development of IMCs. Importantly, the results also show that gastric submucosal progression is characterized by the accumulation of specific genetic alterations. In addition, changes of cell cycle-related proteins are associated with cancer progression.

478. PMID 22433712
Identification of tumor-suppressor genes (TSGs) silenced by aberrant methylation of promoter CpG islands (CGIs) is important, but hampered by a large number of genes methylated as passengers of carcinogenesis. To overcome this issue, we here took advantage of the fact that the vast majority of genes methylated in cancers lack, in normal cells, RNA polymerase II (Pol II) and have trimethylation of histone H3 lysine 27 (H3K27me3) in their promoter CGIs. First, we demonstrated that three of six known TSGs in breast cancer and two of three in colon cancer had Pol II and lacked H3K27me3 in normal cells, being outliers to the general rule. BRCA1, HOXA5, MLH1, and RASSF1A had high Pol II, but were expressed only at low levels in normal cells, and were unlikely to be identified as outliers by their expression statuses in normal cells. Then, using epigenome statuses (Pol II binding and H3K27me3) in normal cells, we made a genome-wide search for outliers in breast cancers, and identified 14 outlier promoter CGIs. Among these, DZIP1, FBN2, HOXA5, and HOXC9 were confirmed to be methylated in primary breast cancer samples. Knockdown of DZIP1 in breast cancer cell lines led to increases of their growth, suggesting it to be a novel TSG. The outliers based on their epigenome statuses contained unique TSGs, including DZIP1, compared with those identified by the expression microarray data. These results showed that the epigenome-based outlier approach is capable of identifying a different set of TSGs, compared to the expression-based outlier approach.

479. PMID 20889571
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that is characterized by excessive proliferation of fibroblasts. The lipid mediator prostaglandin E2 (PGE2) has the capacity to limit fibrosis through its inhibition of numerous functions of these fibroblasts; however, in the setting of fibrosis, fibroblasts have been shown to be resistant to PGE2. We have linked such resistance to decreased expression levels of the E prostanoid 2 (EP2) receptor. In this study, in fibroblasts from both mice and humans with pulmonary fibrosis, we show that DNA hypermethylation is responsible for diminished EP2 expression levels and PGE2 resistance. Bisulfite sequencing of the prostaglandin E receptor 2 gene (PTGER2) promoter revealed that fibrotic fibroblasts exhibit greater PTGER2 methylation than nonfibrotic control cells. Treatment with the DNA methylation inhibitors 5-aza-2'-deoxycytidine and zebularine as well as DNA methyltransferase-specific siRNA decreased PTGER2 methylation, increased EP2 mRNA and protein expression levels, and restored PGE2 responsiveness in fibrotic fibroblasts but not in nonfibrotic controls. PTGER2 promoter hypermethylation was driven by an increase in Akt signal transduction. In addition to results described for the PTGER2 promoter, fibrotic fibroblasts also exhibited increased global DNA methylation. These findings demonstrate that the down-regulation of PTGER2 and consequent PGE2 resistance are both mediated by DNA hypermethylation; we identified increased Akt signal transduction as a novel mechanism that promotes DNA hypermethylation during fibrogenesis.

480. PMID 21134977
Impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n = 18) presented lower levels of CEBPA expression compared to healthy controls (n = 5), but higher levels than those in acute myeloid leukemia with t(8;21) (n = 9) and with inv(16) (n = 5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved.

481. PMID 21324877
Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner.

482. PMID 19268989
In a longitudinal cohort of approximately 700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5'-CpG island(s) (5'-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5'-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5'-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m(3) (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5'CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development.

483. PMID 21170990
In a previous study, human ZNF312b was identified as a cell proliferation-associated oncogene via the K-ras/extracellular signal-regulated kinase cascade in gastric cancer. However, the mechanism concerning its transcriptional activation remains unknown. Here, we show that DNA methylation and histone acetylation of the ZNF312b promoter function as a switch for ZNF312b transcriptional activation in gastric cancer. The transcription level of ZNF312b was increased by treatment with a demethylating agent, 5-aza-2'-deoxycytidine, and the histone deacetylase inhibitor sodium butyrate, in several human cancer cell lines including gastric cancer. Consistent with these results, epigenetic analysis, such as pyrosequencing, bisulfate sequencing, and methyl-specific PCR (MSP), showed that the expression level of ZNF312b is highly dependent on the degree of DNA methylation in gastric cancer cell lines. In addition, by ChIP assay using anti-acetyl/methyl H3K9 antibodies, histone acetylation was shown to mediate the expression of the ZNF312b gene. Interestingly, ChIP assay using the Sp1 antibody revealed that the binding of transcription factor Sp1 to the ZNF312b promoter for its transcriptional activation requires DNA demethylation and histone acetylation. Moreover, a knockdown of Sp1 resulted in a decrease in ERK-mediated proliferation via down-regulation of the ZNF312b gene in gastric cancer cells. Taken together, these results suggest that the aberrant expression of ZNF312b promotes gastric tumorigenesis through epigenetic modification of its promoter region and provides a molecular mechanism for ZNF312b expression to contribute to the progression of gastric cancer. This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF), and by the Drug Target Discovery Project funded from the Ministry of Education, Science & Technology of Korea, and by the KRIBB Research Initiative Program.

484. PMID 22609115
In an effort to identify novel genes related to the prognosis of gastric cancer, we performed gene expression profiling and found overexpressed levels of human interferon-induced transmembrane protein 1 (IFITM1). We validated the gastric cancer-specific up-regulation of IFITM1 and its association with cancer progression. We also studied its epigenetic regulation and tumorigenesis-related functions. Expression of IFITM1 was evaluated in various human gastric cancer cells and in 35 patient tumor tissues by quantitative RT-PCR and Western blot analyses. The results showed highly up-regulated IFITM1 in cancer cell lines and tissues. Furthermore, IHC studies were performed on 151 patient tissues, and a significant correlation was revealed between higher IFITM1 expression and Lauren's intestinal type (P = 0.007) and differentiated adenocarcinoma (P = 0.025). Quantitative studies of DNA methylation for 27 CpG sites in the regulatory region showed hypermethylation in cells expressing low levels of IFITM1. Methylation-dependent IFITM1 expression was confirmed further by in vitro demethylation using 5-aza-2'-deoxycytidine and luciferase assays. The functional analysis of IFITM1 by silencing of its expression with small-interfering RNA showed decreased migration and invasiveness of cancer cells, whereas its overexpression exhibited the opposite results. In this study, we demonstrated gastric cancer-specific overexpression of IFITM1 regulated by promoter methylation and the role of IFITM1 in cancer prognosis.

485. PMID 21856257
In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian tumorigenesis.

486. PMID 20631058
In gastric cancer, a new epigenetic mechanism of tumour suppressor loss has been suggested where the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is responsible for loss of expression of RUNX3. This is consistent with EZH2 upregulation in multiple cancer types being associated with poor prognosis. We investigated whether EZH2 influences the expression of RUNX3 in colorectal cancer (CRC) and whether this is independent of methylation. We determined protein and messenger RNA (mRNA) levels of EZH2 and RUNX3 and assessed RUNX3 methylation with methylation-specific polymerase chain reaction using 72 human CRCs and 8 CRC cell lines. We assessed the effect of efficient RNA interference-mediated knockdown of EZH2 on RUNX3 levels, cell viability and H3K27 trimethylation of the RUNX3 promoter using chromatin immunoprecipitation. Despite higher levels of EZH2 and lower levels of RUNX3 in CRC specimens in general, no inverse correlation between EZH2 and RUNX3 in paired samples was found arguing against a major role for histone methylation in silencing RUNX3 in CRC. Conversely, downregulation of RUNX3 mRNA in the same tumours was associated with RUNX3 DNA methylation (P < 0.05). In cell lines, knockdown of EZH2 removed the repressive chromatin marks from RUNX3 but did not result in RUNX3 re-expression. However, it prevented the re-silencing of RUNX3 after the removal of demethylating agents. . These results would predict that inhibitors of EZH2 and histone methylation would enhance the effects of demethylating agents in cancer therapy.

487. PMID 20428828
In gastric cancer, several tumor suppressor and tumor-related genes are silenced by aberrant methylation. Previously, we demonstrated that BCL2L10, which belongs to the pro-apoptotic Bcl-2 family, was transcriptionally repressed by promoter hypermethylation and that its overexpression caused apoptosis and growth inhibition of gastric cancer cells. In this study, we investigated the methylation status of BCL2L10 and its expression in 21 gastric cancer tissues and corresponding non-neoplastic mucosae along with the methylation status of p16, RUNX3, and hMLH1 genes by using methylation specific PCR. In addition, we examined the association between the methylation status of each gene and the expression of EZH2, which was associated with DNA methylation of its target genes. As a result, aberrant methylation of BCL2L10 was detected in 38% of gastric cancer and in 24% of corresponding non-neoplastic mucosae and correlated with low expression of BCL2L10. Methylation of p16, RUNX3, and hMLH1 was found in gastric cancer and in corresponding non-neoplastic mucosae at almost similar frequencies as previous reports. Expression of EZH2 was detected more frequently in tumors (48%) as compared to corresponding non-neoplastic mucosae (10%) (p=0.006), however, no significant difference was found between expression of EZH2 and the methylation frequency of each gene. In conclusion, our data suggest that silencing of BCL2L10 by aberrant methylation is a common feature in gastric cancer and its inactivation may be involved in the early steps of gastric carcinogenesis.

488. PMID 21173573
In light with the view that KEAP1 loss of function may impact tumour behavior and modify response to chemotherapeutical agents, we sought to determine whether KEAP1 gene is epigenetically regulated in malignant gliomas. We developed a Quantitative Methylation Specific PCR (QMSP) assay to analyze 86 malignant gliomas and 20 normal brain tissues. The discriminatory power of the assay was assessed by Receiving Operating Characteristics (ROC) curve analysis. The AUC value of the curve was 0.823 (95%CI: 0.764-0.883) with an optimal cut off value of 0.133 yielding a 74% sensitivity (95%CI: 63%-82%) and an 85% specificity (95%CI: 64%-95%). Bisulfite sequencing analysis confirmed QMSP results and demonstrated a direct correlation between percentage of methylated CpGs and methylation levels (Spearman's Rho 0.929, P=0.003). Remarkably, a strong inverse correlation was observed between methylation levels and KEAP1 mRNA transcript in tumour tissue (Spearman's Rho -0.656 P=0.0001) and in a cell line before and after treatment with 5-azacytidine (P=0.003). RECPAM multivariate statistical analysis studying the interaction between MGMT and KEAP1 methylation in subjects treated with radiotherapy and temozolomide (n=70), identified three prognostic classes of glioma patients at different risk to progress. While simultaneous methylation of MGMT and KEAP1 promoters was associated with the lowest risk to progress, patients showing only MGMT methylation were the subgroup at the higher risk (HR 5.54, 95% CI 1.35-22.74). Our results further suggest that KEAP1 expression is epigenetically regulated. In addition we demonstrated that KEAP1 is frequently methylated in malignant gliomas and a predictor of patient's outcome.

489. PMID 22430804
In order to identify novel candidate tumor suppressor genes (TSGs) implicated in renal cell carcinoma (RCC), we performed genome-wide methylation profiling of RCC using the HumanMethylation27 BeadChips to assess methylation at > 14,000 genes. Two hundred and twenty hypermethylated probes representing 205 loci/genes were identified in genomic CpG islands. A subset of TSGs investigated in detail exhibited frequent tumor methylation, promoter methylation associated transcriptional silencing and reactivation after demethylation in RCC cell lines and down-regulation of expression in tumor tissue (e.g., SLC34A2 specifically methylated in 63% of RCC, OVOL1 in 40%, DLEC1 in 20%, TMPRSS2 in 26%, SST in 31% and BMP4 in 35%). As OVOL1, a putative regulator of c-Myc transcription, and SST (somatostatin) had not previously been linked to cancer and RCC, respectively, we (1) investigated their potential relevance to tumor growth by RNAi knockdown and found significantly increased anchorage-independent growth and (2) demonstrated that OVOL1 knockdown increased c-Myc mRNA levels.

490. PMID 20865461
In order to investigate the methylation status of the retinoic acid receptor beta 2 gene (RAR-ß2) in breast carcinoma in relation to gene expression and clinicopathological parameters of patients with breast cancer, expression of RAR-ß2 gene and methylation status were analyzed in invasive carcinoma, atypical ductal hyperplasia, fibroadenoma specimens, and normal tissues. Our findings showed that RAR-ß2 expression was lower in the breast cancer compared to normal tissue and fibroadenoma. The methylation rate of RAR-ß2 in breast cancer and precancerous lesions of breast cancer were higher than that of normal tissues. Hypermethylation may be an initial step in breast carcinogenesis.

491. PMID 22399594
In our previous study, we used quantitative methylation-specific polymerase chain reaction (qMSP) to examine the methylation status of tissue factor pathway inhibitor 2 (TFPI2) in the preoperative serum DNA of 215 colorectal cancer patients and found that TFPI2 was methylated in serum DNA from 39 of these patients. In this study, we examined postoperative serum DNA, obtained within one month after surgery from 38 out of the 39 patients and found that TFPI2 was methylated in the serum DNA of only 18 (47%) of these patients, suggesting that TFPI2 methylation in the serum of the remaining colorectal cancer patients was abolished by surgical tumor reduction. Next, we examined the correlation between the presence of TFPI2 methylation in postoperative serum DNA and residual cancer status after surgery. If R0 (no residual cancer) operations were successfully performed, TFPI2 methylation was not detected in postoperative serum. However, if R2 (obvious residual cancer) operations were performed, 17 (77%) out of 22 postoperative sera, still exhibited TFPI2 methylation. Taken together, our results confirm that detection of methylated TFPI2 in serum DNA was derived from colorectal cancer and could serve as a marker of surgical outcome.

492. PMID 21400501
In our study, whole-genome methylation arrays were applied to identify novel genes with tumor specific DNA methylation of promoter CpG islands in pre-malignant and malignant colorectal lesions. Using a combination of Illumina HumanMethylation27 beadchips, Methylation-Sensitive High Resolution Melting (MS-HRM) analysis, and Exon arrays (Affymetrix) the DNA methylation pattern of ~14,000 genes and their transcript levels were investigated in six normal mucosas, six adenomas and 30 MSI and MSS carcinomas. Sixty eight genes with tumor-specific hypermethylation were identified (p < 0.005). Identified hypermethylated sites were validated in an independent sample set of eight normal mucosas, 12 adenomas, 40 MSS and nine MSI cancer samples. The methylation patterns of 15 selected genes, hypermethylated in adenomas and carcinomas (FLI1, ST6GALNAC5, TWIST1, ADHFE1, JAM2, IRF4, CNRIP1, NRG1 and EYA4), in carcinomas only (ABHD9, AOX1 and RERG), or in MSI but not MSS carcinomas (RAMP2, DSC3 and MLH1) were validated using MS-HRM. Four of these genes (MLH1, AOX1, EYA4 and TWIST1) had previously been reported to be hypermethylated in CRC. Eleven genes, not previously known to be affected by CRC specific hypermethylation, were identified and validated. Inverse correlation to gene expression was observed for six of the 15 genes with Spearman correlation coefficients ranging from -0.39 to -0.60. For six of these genes the altered methylation patterns had a profound transcriptional association, indicating that methylation of these genes may play a direct regulatory role. The hypermethylation changes often occurred already in adenomas, indicating that they may be used as biomarkers for early detection of CRC.

493. PMID 20804913
. Here we report a multiplex MethyLight polymerase chain reaction (PCR) assay that simultaneously detected the methylation status of ALX4, SEPT9, and TMEFF2, as well as quantifying methylation level of these genes in a total of 127 fresh tissue samples and 182 peripheral blood samples from CRC patients. Using the multiplex MethyLight assay, methylated ALX4, SEPT9, and TMEFF2 occurred in 56, 78, and 75% of CRC tissue samples and in 48, 75, and 71% of peripheral blood samples from CRC patients. The sensitivities of the combined study using the three genes as biomarkers for the detection of CRC in primary tissues and peripheral blood samples were 84 and 81%, with specificities of 87 and 90%, respectively. Combining the specificity of real-time PCR, the high throughput of multiplex PCR, and the high sensitivity of multigene detection, this multiplex MethyLight PCR assay may allow for future screening programs with large-scale noninvasive blood testing for early-stage CRC.

494. PMID 22272624
In recent years, in parallel with the growing awareness of the multifactorial nature of Late Onset Alzheimer's Disease, the possibility that epigenetic mechanisms could be involved in the onset and/or progression of the pathology assumed an increasingly intriguing and leading role in Alzheimer's research. Today, many scientific reports indicate the existence of an epigenetic drift during ageing, in particular in Alzheimer's subjects. At the same time, experimental evidences are provided with the aim to demonstrate the causative or consequential role of epigenetic mechanisms. Our research group was involved in the last ten years in studying DNA methylation, the main epigenetic modification, in relationship to altered one-carbon metabolism (namely high homocysteine and low B vitamins levels), in Alzheimer's experimental models. Our previous findings about the demethylation of Presenilin1 gene promoter in nutritionally-induced hyperhomocysteinemia in a transgenic mouse model clearly demonstrated that Presenilin1 is regulated by DNA methylation. One of the open questions raised by our studies was if the observed demethylation was solely due to the induced imbalance of one-carbon metabolism or could be a response to the massive deposition of amyloid plaques in transgenic mice. Here we analyzed old (10 months) mice under standard diet in order to evidence possible changes in Presenilin1 promoter methylation in transgenic (TgCRND8 mice, carrying a double-mutated human APP transgene) vs. wt mice (129Sv) after prolonged exposure to amyloid. We found no differences in Presenilin1 methylation despite a slight increase in gene expression; these results suggest that amyloid production is not responsible for Presenilin1 demethylation in TgCRND8 mice brain.

495. PMID 22108652
In the identification of subjects with lung cancer, increased DNA methylation of the SHOX2 gene locus in bronchial aspirates has previously been proven to be a clinically valuable biomarker. This is particularly true in cases where the cytological and histological results following bronchoscopy are undetermined. This previous case control study was conducted using research assay components and a complex work flow. To facilitate the use in a diagnostic setting, a CE marked in vitro diagnostic test kit to quantify SHOX2 DNA methylation in bronchial aspirates was developed and characterized. The presented assay for measuring SHOX2 DNA methylation in bronchial aspirates is based on two major steps: generation of bisulfite converted template DNA from patient samples followed by subsequent determination of SHOX2 biomarker methylation by real-time PCR. Individual kits for DNA preparation, real-time PCR analysis and work flow control were developed. This study describes the analytical performance (reproducibility, accuracy, interfering substances, cross-reactivity) of the in vitro diagnostic (IVD) test kit 'Epi proLung BL Reflex Assay'. In addition, the intended use of the test was validated in a clinical performance evaluation (case control) study comprised of 250 patients (125 cases, 125 controls). The results describe the test as a robust and reliable diagnostic tool for identifying patients with lung cancer using Saccomanno-fixed bronchial lavage specimens (AUC [95% confidence intervals] = 0.94 [0.91-0.98], sensitivity 78% [69-86]/specificity 96% [90-99]). This test may be used as a diagnostic adjunct to existing clinical and pathological investigations in lung cancer.

496. PMID 21769436
. The proliferation of glioma cells was assessed using a clonogenic survival assay and flow cytometry. CD133 expression was assessed in SHG-44-GSCs using RT-PCR and flow cytometry. MGMT exhibited resistance to radiation in the SHG-44-GSCs using siRNA transfection. The effects of the siRNA on mRNA and protein expression of MGMT in SHG-44-GSCs were detected using semi-quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. MGMT methylation status, MGMT and CD133 expression profiles were assessed in 59 malignant glioma patients using methylation-specific polymerase chain reaction (MSP), and immunohistochemistry. In vitro, SHG-44-GSCs exhibited a characteristic resistance to radiation that was not observed in SHG-44 cells. This resistance was attributed to the unmethylated status of the MGMT promoter and to high expression levels of MGMT mRNA in the glioma cells. In these patients, the CD133 marker, but not MGMT promoter methylation or MGMT protein level, was associated with resistance to radiotherapy (n=59; hazard ratio=2.838; 95% CI, 1.725-7.597; p=0.001). The median progression-free survival (PFS) among patients with the CD133 marker was 14 months, whereas it was 35 months in patients without CD133 (p=0.001). Notably, co-expression of the methylated MGMT promoter and the CD133 marker was associated with the poorest outcome in patients with gliomas treated by radiotherapy; in these patients, PFS was 7 months. These results suggest that assessment of GSC MGMT and CD133 levels will guide future clinical targeted therapies and stratify glioma patient treatment regimens. High expression levels of the CD133 protein could be used as a predictor for poor survival in patients treated with radiotherapy.

497. PMID 21383689
In the testicular cancer cell line, NT2, we previously demonstrated that differentially methylated regions were located in introns or intergenic regions, and postulated these might regulate non-coding RNAs. Three microRNAs and three small nucleolar RNAs were differentially methylated; one, miR-199a, was associated with the progression and prognosis of gastric and ovarian cancers. In this report we document, by epigenomic profiling of testicular tissue, that miR-199a is transcribed as antisense of dynamin 3 (chromosome 1q24.3), and hypermethylation of this region is correlated with miR-199a-5p/3p repression and tumor malignancy. Re-expression of miR-199a in testicular cancer cells led to suppression of cell growth, cancer migration, invasion and metastasis. The miR-199a-5p, one of two mature miRNA species derived from miR-199a, is associated with tumor malignancy. We further identified the embryonal carcinoma antigen podocalyxin-like protein 1 (PODXL), an anti-adhesive protein expressed in aggressive tumors, as a target of miR-199a-5p. We demonstrated PODXL is overexpressed in malignant testicular tumor, and cellular depletion of PODXL resulted in suppression of cancer invasion. The inverse relationship between PODXL and miR-199a-5p expression suggests PODXL is a downstream effector mediating the action of miR199a-5p. This report identifies DNA methylation, miR-199a dysregulation and PODXL as critical factors in tumor malignancy.

498. PMID 17965595
In this review, we discuss changes in the regulation of gene expression in the central nervous system (CNS) associated with DNA (cytosine-5) methylation, chromatin remodeling and post-translational covalent modifications of histones. During brain development, abnormal intrinsic or extrinsic cues may compromise epigenetic processes regulating neural stem cell proliferation and differentiation and thus directly or indirectly could contribute to altered epiphenotypes leading to psychiatric disorders. These mechanisms, that include chromatin remodeling and reversible changes in promoter methylation patterns, are largely expressed by terminally differentiated cortical GABAergic neurons. These neurons are unique among various brain cell subtypes because they express high levels of DNA-methyltransferase-1 (DNMT1). Moreover, DNMT1 expression is further increased in schizophrenia (SZ) and bipolar (BP) disorder brains. To unravel how this pathological DNMT1 overexpression induces GABAergic neuronal dysfunction in SZ and in other psychoses, we report on how alterations in methylation modify the expression of susceptible vulnerability genes such as reelin or GAD67 in these neurons. The results encourage the view that promoter hypermethylation in GABAergic neurons that occurs in SZ represents a testable target for novel therapeutic strategies to treat this disorder.

499. PMID 22001963
In this study we investigated epigenetic modifications such as DNA methylation, histone acetylation and histone methylation in the regulation of heparanase expression in glioblastoma. We found that heparanase promoters are differentially methylated among three glioblastoma cell lines; however, all these cells expressed baseline levels of heparanase. 5-Aza-2'-deoxycytidine (5-Aza-dC), a DNA methyltransferase inhibitor, revoked heparanase expression in all the examined cells. Trichostatin A (TSA), a histone deacetylase inhibitor, activated heparanase expression in promoter unmethylated LN229 and T98G cells but not in promoter methylated U251n cells. To identify the mechanisms of heparanase induction by 5-Aza-dC, heparanase expression-related transcription factors were examined. No detected transcription factors (EGR1, Ets1, GABPa and Sp1) were found to be induced either by 5-Aza-dC or TSA. Furthermore, we found that 5-Aza-dC increased acetylation of histone H3 and di-methylation of histone H3 lysine K4 (H3K4me2) in LN229 and T98G cells. The increased histone acetylation and H3K4me2 were also observed in heparanase-expressing tumor tissues by immunohistochemistry staining. Additionally, we found that nuclear factor ?B (NF?B) p65 but not NF?B p50 was correlated with heparanase expression, which could be expressed both by neoplastic cells and angiogenesis-related neovessel cells. However, we did not observe any regulatory mechanism between heparanase and NF?B p65 via transient transfection of their cDNA in T98G and U251n cells. We concluded that heparanase expression is associated with histone modifications and promoter DNA methylation plays a role in the control of gene silencing. Overexpression of both heparanase and NF?B p65 may be the result of excessive histone modifications.

500. PMID 22610074
In this study, the promoter of the gene coiled-coil domain containing 67 (CCDC67) was found to be frequently methylated in gastric cancer cell lines and in primary gastric tumors, as examined by restriction landmark genomic scanning. In addition, CCDC67 expression was down-regulated in 72.7 % of gastric cancer cell lines tested. In most cases, gene down-regulation was associated with CpG hypermethylation in the CCDC67 promoter. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin A restored CCDC67 expression in down-regulated cell lines. Pyrosequencing analysis of 150 paired primary gastric cancer samples revealed that promoter CpG methylation was increased in 74% of tested tumors compared to paired adjacent normal tissues, and this hypermethylation correlated significantly with down-regulation of CCDC67. CCDC67 protein was localized to the cell membrane by immunocytochemistry. Stable transfection of a CCDC67 gene in one gastric cancer cell line inhibited adhesion-dependent and -independent colony formation, and CCDC67 expression suppressed tumorigenesis in nude mice. We suggest that CCDC67 is a putative tumor suppressor gene that is silenced in gastric cancers by promoter CpG methylation and that it may play an important role in cell signaling and migration related to tumorigenesis.

501. PMID 18384396
In this study, we examined the P15(INK4B) gene promoter methylation in patients with myelodysplastic syndrome and acute leukemia and its possible relationship with parvovirus B19 and Epstein-Barr virus infections. P15(INK4B) methylation frequency was significantly higher in acute leukemia patients than in that of non-malignant patients (P <; 0.05). When the patients with myelodysplastic syndrome were included, no significant difference was found between these groups regarding the methylation status. The possible correlation between P15(INK4B) promoter methylation and parvovirus B19 infection was observed in adult acute leukemia patients (P <; 0.05). However, no similar relationship in EBV-infected patients was observed. To the best of our knowledge, this is the first report showing the possible association between P15(INK4B) promoter methylation and parvovirus B19 infection in acute leukemia.

502. PMID 21987236
. In order to substantiate the prognostic relevance of BNIP3, we explored its association with 8-oxo-2'deoxyguanosine (8-oxodG), a marker of oxidative stress with prognostic relevance. BNIP3 expression and CIMP phenotype were studied using semi-quantitative RT-PCR and combined bisulfite restriction analysis (COBRA), respectively, in 56 IDC tumors. Eight polymorphisms in one-carbon metabolism were studied using PCR-RFLP and PCR-AFLP approaches. 8-oxodG was measured using competitive ELISA kit. BNIP3 was found to be upregulated in IDC (cases vs. controls: 0.94 ± 0.05 vs. 0.18 ± 0.08, P < 0.0001). COBRA analysis confirmed hypomethylation of BNIP3 promoter CpG island in these cases. CIMP phenotype of BNIP3 showed positive association with tubule formation (P = 0.034) and methionine synthase reductase (MTRR) A66G (P = 0.002); inverse association with cytosolic serine hydroxyl methyltransferase (cSHMT) C1420T (P < 0.005) and 8-oxodG (<10% vs. >10% methylation: 7.24 ± 2.77 ng/ml vs. 4.42 ± 2.93 ng/ml, P < 0.0005); and no association with nuclear pleomorphism or mitotic index or ER, PR, and HER statuses. Synergistic effect of MTR A2756G and MTRR A66G variants on BNIP3 hypermethylator phenotype was clearly evident (P < 0.0007). MTRR A66G and cSHMT C1420T polymorphisms influence CIMP phenotype of BNIP3, thus epigenetically regulating BNIP3 in breast cancer. The linear association between BNIP3 and 8-oxodG substantiates the role of BNIP3 as redox sensor as well as prognostic marker in breast cancer.

503. PMID 20118908
Inactivation of the CDKN2A-CDKN2B locus has been reported in the most frequent subtypes of cutaneous T-cell lymphomas (CTCLs), mycosis fungoides, Sézary syndrome (SS) and CD30+ cutaneous anaplastic large cell lymphoma. To investigate whether genetic or epigenetic inactivation of CDKN2A-CDKN2B is more specifically observed in certain CTCL subtypes with clinical impact, we used array-comparative genomic hybridization, quantitative PCR, interphase fluorescent in situ hybridization and methylation analyses of p14(ARF) p16(INK4A) and p15(INK4B) promoters. We studied 67 samples from 58 patients with either transformed mycosis fungoides (n=24), SS (n=16) or CD30+ cutaneous anaplastic large cell lymphoma (n=18). We observed combined CDKN2A-CDKN2B deletion in both transformed mycosis fungoides (n=17, 71%) and SS patients (n=7, 44%), but, surprisingly, in only one CD30+ cutaneous anaplastic large cell lymphoma case. Interphase fluorescent in situ hybridization showed 9p21 loss in 17 out of 19 cases, with 9p21 deletion indicating either hemizygous (n=4) or homozygous (n=2) deletion, with mixed patterns in most patients (n=11). The limited size of 9p21 deletion was found to account for false-negative detection by either BAC arrays (n=9) or fluorescent in situ hybridization (n=2), especially in patients with Sézary syndrome (n=6). Methylation was found to be restricted to the p15(INK4B) gene promoter in patients with or without 9p21 deletion and did not correlate with prognosis. In contrast, CDKN2A-CDKN2B genetic loss was strongly associated with a shorter survival in CTCL patients (P=0.002) and more specifically at 24 months in transformed mycosis fungoides and SS patients (P=0.02). As immunohistochemistry for p16(INK4A) protein was not found to be informative, the genetic status of the CDKN2A-CDKN2B locus would be relevant in assessing patients with epidermotropic CTCLs in order to identify those cases where the disease was more aggressive.

504. PMID 18949413
Inactivation of the p16 and ESR1 tumor suppressor genes by promoter lesion methylation has been reported in many tumor types, including lung cancer. We examined the blood of 95 non-small cell lung cancer patients (66 cases of adenocarcinoma, 23 of squamous cell carcinoma and 6 of large cell carcinoma) and 30 controls consisting of normal subjects and benign disease patients to determine the methylation ratios of p16 and ESR1 using real-time PCR. For both genes, there was a statistically significant difference in the methylation ratio between non-small cell lung cancer patients and controls (p16; p<0.01, ESR1; p<0.001). In addition, there was a strong correlation between the methylation ratio of each gene and old age (p16; p<0.01, ESR1; p<0.001 and p16 or ESR1; p<0.001), and between p16 or ESR1 methylation rate and smoking history (p<0.01). Moreover in Stage I cases, the methylation positive rate of each gene (p16, ESR1 and p16 or ESR1) was higher than the CEA positive rate (p<0.05, p<0.001, p<0.001). Evaluation of p16 and ESR1 promoter methylation in blood using real-time PCR appears to be very useful for lung cancer diagnosis and there is some possibility that these methylated genes might come to represent useful biomarkers for the early detection of lung cancer. Our study results also suggested that comparative evaluation of the methylation ratio before and after surgery might be a powerful tool to predict the prognosis of lung cancer patients.

505. PMID 21156971
Inactivation of the tumor suppressor gene RASSF1A through methylation of the CpG islands within its promoter region as a prognostic factor for survival in non-small cell lung carcinoma (NSCLC) remains controversial. A meta-analysis of published studies investigating the effects of RASSF1A methylation on both relapse-free survival (RFS) and overall survival (OS) among NSCLC patients was performed. A total of 2802 patients from 19 eligible studies were included in the systematic review and 17 studies were included in the meta-analysis. In all, 32.6% of NSCLC patients had the methylated RASSF1A allele. Four of these studies investigated the correlation between RASSF1A methylation and RFS using univariate analysis. The univariate estimate for RFS was 1.87 [95% confidence interval (CI): 1.41-2.49; P < 0.0001] with no evidence of significant heterogeneity. Thirteen studies undertook univariate analyses of RASSF1A methylation and OS and 12 undertook multivariate analyses of RASSF1A methylation and OS. The pooled hazard ratio (HR) estimate for OS was 1.52 (95% CI: 1.33-1.74; P < 0.0001) by univariate analysis and 1.34 (95% CI: 1.15-1.57; P < 0.0001) by multivariate analysis. No significant heterogeneity was detected. For stages I-II NSCLC, the meta-risk remained highly significant by both univariate (HR = 1.94; 95% CI: 1.54-2.44; P < 0.0001) and multivariate analysis (HR = 1.39; 95% CI: 1.02-1.90; P = 0.039). This study shows that RASSF1A methylation appears to be an independent prognostic factor for poor survival in surgically treated NSCLC. However, the present findings require confirmation though adequately designed prospective studies.

506. PMID 20576920
Inactivation of tumor suppressor gene p16 may play an important role in the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). Hypermethylation of p16 gene promoter is an important mechanism inactivating p16. However, the mechanisms of p16 hypermethylation in EA are not known. Therefore, we examined whether acid increases methylation of p16 gene promoter and whether NADPH oxidase NOX5-S mediates acid-induced p16 hypermethylation in a Barrett's cell line BAR-T and an EA cell line OE33. We found that NOX5-S was present in BAR-T and OE33 cells. Acid-induced increase in H(2)O(2) production and cell proliferation was significantly reduced by knockdown of NOX5-S. Exogenous H(2)O(2) remarkably increased p16 promoter methylation and cell proliferation. In addition, acid treatment significantly increased p16 promoter methylation and decreased p16 mRNA level. Knockdown of NOX5-S significantly increased p16 mRNA, inhibited acid-induced downregulation of p16 mRNA, and blocked acid-induced increase in p16 methylation and cell proliferation. Conversely, overexpression of NOX5-S significantly decreased p16 mRNA and increased p16 methylation and cell proliferation. In conclusion, NOX5-S is present in BAR-T cells and OE33 cells and mediates acid-induced H(2)O(2) production and cell proliferation. NOX5-S is also involved in acid-induced hypermethylation of p16 gene promoter and downregulation of p16 mRNA. It is possible that acid reflux present in BE patients may activate NOX5-S and increase production of reactive oxygen species, which in turn increase p16 promoter methylation, downregulate p16 expression, and increase cell proliferation, thereby contributing to the progression from BE to EA.

507. PMID 21880597
Inactivation of tumor suppressor genes plays an important role in tumorigenesis, and epigenetic modifications such as DNA methylation are frequently associated with transcriptional repression. Here, we show that gene silencing at selected genes with signs of DNA hypermethylation in breast cancer cells involves Pol II stalling. We studied several repressed genes with DNA hypermethylation within a region 1-kb upstream of the transcriptional start site that were upregulated after treatment with DNA demethylating agents, such as Azacytidine and several natural products. All those selected genes had stalled Pol II at their transcriptional start site and showed enhanced ser2 phosphorylated Pol II and elevated transcripts after drug treatment indicating successful elongation. In addition, a decrease of the epigenetic regulator LSH in a breast cancer cell line by siRNA treatment reduced DNA methylation and overcame Pol II stalling, whereas overexpression of LSH in a normal breast epithelial cell line increased DNA methylation and resulted in repression. Decrease of LSH was associated with reduced DNMT3b binding to promoter sequences, and depletion of DNMT3b by siRNA could release Pol II suggesting that DNMT3b is functionally involved. The release of paused Pol II was accompanied by a dynamic switch from repressive to active chromatin marks. Thus release of Pol II stalling can act as a mechanism for gene reactivation at specific target genes after DNA demethylating treatment in cancer cells.

508. PMID 21109964
Inactivation of tumor-related genes by promoter hypermethylation is a common epigenetic event in the development of variety of tumors. Dermo1 (also called twist2) is a novel cancer-related gene which belongs to the basic helix-loop-helix (bHLH) transcription factor family. Herein, we report that dermo1 expression was sporadically abrogated in human cancer cells by transcriptional silencing associated with CpG island promoter hypermethylation. Direct sequencing of bisulfite-modified DNA from a panel of seven human cancer cell lines (HL60, Molm14, MV4-11, RS4:11, MDM-BA231, H358, and H1299) revealed that CpG dinucleotides in the dermo1 promoter were methylated. RT-PCR results demonstrated that dermo1 CpG island hypermethylation was accompanied by a low basal dermo1 expression level. Our data implicate dermo1 as a tumor suppressor gene and a valuable molecular marker for human cancer.

509. PMID 21600761
Inappropriate gene silencing and subsequent promiscuous activity define the transformation of many solid tumours including renal cell carcinoma (RCC). Here, we report that UNC5C, one of the Netrin-1 receptors, was frequently inactivated in RCC cell lines and primary tumours. UNC5C protein was expressed in the proximal convoluted tubules of the human kidney, the presumed origin of clear cell RCC (ccRCC) and papillary RCC (pRCC). Compared to paired adjacent non-malignant tissues, both UNC5C mRNA and protein expression were significantly down-regulated in RCC. Immunohistochemical analysis showed that UNC5C was inactivated in 94.3% of the samples and the loss of UNC5C occurred at the early stage of RCC. Methylation specific PCR showed that UNC5C promoter was methylated in two renal carcinoma cell lines. Pharmacologic demethylation alone or in combination with inhibition of deacetylation dramatically induced UNC5C expression. Furthermore, bisulfite genomic sequencing (BGS) confirmed that dense methylation existed in UNC5C promoter. In paired tumour samples, UNC5C methylation was observed in 12 out of 44 patients (27.3%). Moreover, we analysed the loss of heterozygosity (LOH) of UNC5C in renal cell carcinoma, the LOH was observed in 27 out of 44 patients (61.4%). Finally, restoration of UNC5C expression suppressed the colony formation of renal carcinoma cells. In addition, UNC5C inhibited tumour cell proliferation, migration and enhanced chemosensitivity to cisplatin and etoposide. Therefore, UNC5C acts as a tumour suppressor in RCC and is down-regulated in RCC. Loss of heterozygosity and DNA methylation contribute to the inactivation of UNC5C in renal cell carcinoma.

510. PMID 21900595
Increased alcohol consumption is a putative colorectal cancer (CRC) risk factor. However, existing data are less conclusive for women than men. Also, to date, relatively few studies have reported alcohol-related CRC risks based on molecularly defined tumor subtypes. ; n = 41,836). Subjects were 55 to 69 years at baseline (1986), and exposure data were obtained by self-report. Incident CRCs were prospectively identified and archived, paraffin-embedded tissue specimens were collected from 732 representative cases, diagnosed through December 31, 2002. Multivariate Cox regression models were fit to estimate relative risks (RR) and 95% confidence intervals (CI). Among alcohol consumers, the median intake (range) was 3.4 (0.9-292.8) g/d. Compared with nonconsumers, alcohol intake levels of 3.4 g/d or less (RR = 1.00; 95% CI, 0.86-1.15) and more than 3.4 g/d (RR = 1.06; 95% CI, 0.91-1.24) were not significantly associated with overall CRC risk. Analyses based on alcohol intake levels of 30 g/d or less and more than 30 g/d or quartile distributions yielded similar risk estimates. Null associations were also observed between each alcohol intake level and the MSI-, CIMP- or, BRAF-defined CRC subtypes (P > 0.05 for each comparison). These data do not support an adverse effect from alcohol intake on CRC risk, overall or by specific molecularly defined subtypes, among older women.

511. PMID 22228215
Increased and decreased methylation at specific sequences (hypermethylation and hypomethylation, respectively) is characteristic of tumor DNA compared to normal DNA and promotes carcinogenesis in multiple ways including genomic instability. Long interspersed element (LINE), an abundant class of retrotransposons, provides a surrogate marker for global hypomethylation. We developed methylation-specific multiplex ligation-dependent probe amplification assays to study LINE-1 methylation in cases of colorectal, gastric, and endometrial cancer (N?=?276), stratified by patient category [sporadic; Lynch syndrome (LS); familial colorectal cancer type X (FCCX)] and microsatellite instability status. Within each patient group, LINE-1 showed lower methylation in tumor DNA relative to paired normal DNA and hypomethylation was statistically significant in most cases. . Despite the fact that the degree of LINE-1 methylation is generally tissue specific, normal colorectal mucosa, gastric mucosa, and endometrium from LS patients showed similar levels of LINE-1 methylation. Our results suggest that the degree of LINE-1 methylation may constitute a "field defect" that may predispose normal tissues for cancer development.

512. PMID 18930140
Increasing evidence has linked inflammatory processes to neurodegenerative disorders, including Alzheimer's and Parkinson's disease (PD). Tumor necrosis factor alpha (TNF-alpha) is a key inflammatory cytokine and several studies linked increased TNF-alpha to dopaminergic cell death in PD. The TNF-alpha promoter sequence contains several CpG dinucleotides located within or next to transcription factor binding sites. To test the hypothesis whether the methylation state of the TNF-alpha promoter contributes to increased expression of TNF-alpha in PD we compared DNA from different brain regions (substantia nigra pars compacta (SNpc) and cortex) of PD patients and neurologically healthy, age and sex matched controls by bisulfite sequencing of the TNF-alpha promoter region. The TNF-alpha promoter DNA from SNpc was significantly less methylated in comparison to DNA from cortex; however both in PD patients and controls. Although there was a tendency for hypomethylation in PD, our analysis of the 10 CpGs in the TNF-alpha core promoter region (-258 to -35 relative to the TSS) revealed no particular pattern in PD patients compared to control and identified no particular hypomethylated position in cortex or SNpc DNA. Electrophoretic mobility shift and luciferase reporter assays showed that methylation of specific solitary CpG in the TNF-alpha promoter resulted in reduced binding of the transcription factors AP-2 and Sp1, respectively, and suppressed TNF-alpha promoter activity. The brain region specific methylation state of solitary CpG in the TNF-alpha promoter thus determines transcription factor binding efficacy and TNF-alpha expression. A lesser degree of methylation of the TNF-alpha promoter in SNpc cells could underlie the increased susceptibility of dopaminergic neurons to TNF-alpha mediated inflammatory reactions.

513. PMID 21204206
Individual studies of the genetics of neural tube defects (NTDs) contain results on a small number of genes in each report. To identify genetic risk factors for NTDs, we evaluated potentially functional single nucleotide polymorphisms (SNPs) that are biologically plausible risk factors for NTDs but that have never been investigated for an association with NTDs, examined SNPs that previously showed no association with NTDs in published studies, and tried to confirm previously reported associations in folate-related and non-folate-related genes. We investigated 64 SNPs in 34 genes for association with spina bifida in up to 558 case families (520 cases, 507 mothers, 457 fathers) and 994 controls in Ireland. Case-control and mother-control comparisons of genotype frequencies, tests of transmission disequilibrium, and log-linear regression models were used to calculate effect estimates. Spina bifida was associated with over-transmission of the LEPR (leptin receptor) rs1805134 minor C allele [genotype relative risk (GRR): 1.5; 95% confidence interval (CI): 1.0-2.1; P?=?0.0264] and the COMT (catechol-O-methyltransferase) rs737865 major T allele (GRR: 1.4; 95% CI: 1.1-2.0; P?=?0.0206). After correcting for multiple comparisons, these individual test P-values exceeded 0.05. Consistent with previous reports, spina bifida was associated with MTHFR 677C>T, T (Brachyury) rs3127334, LEPR K109R, and PDGFRA promoter haplotype combinations. The associations between LEPR SNPs and spina bifida suggest a possible mechanism for the finding that obesity is a NTD risk factor. The association between a variant in COMT and spina bifida implicates methylation and epigenetics in NTDs.

514. PMID 20125118
Induced expression of the Abcb1 drug transporter often occurs in tumors in response to chemotherapy. The role that epigenetic modifications within the ABCB1 promoter play in Abcb1 expression remains unclear. We selected MCF-7 cells for survival in increasing doses of chemotherapy drugs, and assessed the methylation status of 66 CpG sites within the ABCB1 promoter preceding, accompanying and following the onset of drug resistance. Increased ABCB1 transcript expression coincident with acquisition of resistance to epirubicin or paclitaxel was temporally associated with hypomethylation of the ABCB1 downstream promoter in the absence of gene amplifications or changes in mRNA stability. Treatment of control MCF-7 cells with demethylating and/or acetylating agents increased ABCB1 transcript expression. In addition to broad promoter hypomethylation, dramatic reductions in the methylation of specific CpG sites within the promoter were observed, suggesting that these sites may play a predominant role in transcriptional activation through promoter hypomethylation. Furthermore, our data suggest that allele-specific reductions in ABCB1 promoter methylation regulate promoter usage within paclitaxel-resistant cells. This study provides strong evidence that changes in ABCB1 promoter methylation, ABCB1 promoter usage and ABCB1 transcript expression can be temporally and causally correlated with the acquisition of drug resistance in breast tumor cells.

515. PMID 22215089
Inducible nitric oxide synthase (iNOS) expression is altered in gastrointestinal diseases. Helicobacter pylori (Hp) infection may have a critical role in iNOS disregulation. We undertook this study to investigate possible chromatin changes occurring early during iNOS gene activation as a direct consequence of Hp-gastric cells interaction. We show that Hp infection is followed by different expression and chromatin modifications in gastric cells including (1) activation of iNOS gene expression, (2) chromatin changes at iNOS promoter including decreased H3K9 methylation and increased H3 acetylation and H3K4 methylation levels, (3) selective release of methyl-CpG-binding protein 2 from the iNOS promoter. Moreover, we show that Hp-induced activation of iNOS is delayed, but not eliminated, by the treatment with LSD1 inhibitors. Our data suggest a role for specific chromatin-based mechanisms in the control of human iNOS gene expression upon Hp exposure.

516. PMID 18157091
Infiltrating adenocarcinoma of the pancreas is thought to develop through well-defined precursor lesions called pancreatic intraductal neoplasia (PanIN). Despite the exponential growth in our understanding of genetic events that characterize the progression of PanINs to invasive carcinoma, little is known about the role of epigenetic alterations in these precursor lesions. To define the timing and prevalence of methylation abnormalities during early pancreatic carcinogenesis, we investigated the CpG island methylation profile in the various grades of PanINs. Using methylation-specific PCR, we analyzed DNA samples from 65 PanIN lesions for methylation status of eight genes recently identified by microarray approach as aberrantly hypermethylated in invasive pancreatic cancer. Aberrant methylation at any of the eight genes was identified in 68% of all the PanIN lesions examined, and, notably, aberrant methylation was identified in more than 70% of the earliest lesions (PanIN-1A). The average number of methylated loci was 1.1 in PanIN-1A, 0.8 in PanIN-1B, 1.1 in PanIN-2, and 2.9 in PanIN-3 lesions (P=0.01 for PanIN -3 vs earlier PanINs). Among the genes analyzed, NPTX2 demonstrated an increase in methylation prevalence from PanIN-1 to PanIN-2 (P=0.0008), and from PanIN-2 to PanIN-3 for SARP2 (P=0.001), Reprimo (P=0.01), and LHX1 (P=0.03). These results suggest that aberrant CpG island hypermethylation begins in early stages of PanINs, and its prevalence progressively increases during neoplastic progression.

517. PMID 21153458
Inflammation and hormonal signalling induce the cyclooxygenase-2 (COX-2) expression in solid tumours including breast cancer, which in turn affects cell proliferation, apoptosis and metastasis. The aim of this study was to investigate the expression of COX-2 and its association with clinical parameters, patient's survival, hormones receptors (oestrogen, progesterone), ERBB2 and TP53 expression in 83 cases of infiltrating ductal breast carcinomas. Moreover, the methylation status at the CpG islands of the COX-2 gene promoter was also explored in 70 specimens. We showed that tumours exhibiting moderate to intense COX-2 immunostaining were significantly more frequent in patients over 45 years old (p = 0.027). Moreover, a high level of COX-2 expression correlated with a shorter survival time (p log-rank = 0.04) and was an independent prognostic factor (p = 0.022; HR 6.4; 95% CI = 1.3-31.4). On the other hand, hypermethylation of the COX-2 gene promoter was observed in 27% of cases and strongly associated with smaller tumours (<5 cm, p = 0.011). Furthermore, patients with methylated COX-2 pattern have a better 4-year disease-free survival (p = 0.022) as well as a prolonged overall survival (p log-rank test = 0.034). In conclusion, we showed that high COX-2 expression was associated with reduced survival and was an independent prognostic factor. However, hypermethylation of the COX-2 promoter correlated with a better overall survival in Tunisian patients with breast carcinoma.

518. PMID 22095154
Inflammation is a crucial driving force in the development of gastric cancers (GCs). Accordingly, persistent activation of STAT3, a transcription factor pivotal in regulating both inflammation and oncogenesis, is often detected in GC, although its mechanism remains elusive. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of proinflammatory cytokine signaling and SOCS-1 gene methylation is frequently detected in various cancers including GC. However, the significance of SOCS-1 methylation in GC cells remains unexplored. Our study is undertaken to evaluate the role of SOCS-1 in GC cell proliferation and its effect on signaling pathways in GC cells. Among five GC cell lines, SOCS-1 gene was methylated in all cell lines and constitutive STAT3 phosphorylation with elevated endogenous IL-6 production was detected in two cell lines (NUGC-3 and AGS). Unexpectedly, anti-IL-6R antibody inhibited neither cell proliferation nor STAT3 phosphorylation in NUGC-3 and AGS. In contrast, enforced SOCS-1 expression by adenoviral vector (AdSOCS-1) markedly suppressed STAT3 phosphorylation and proliferation of NUGC-3 and AGS cells in vitro. Interestingly, the antiproliferative effect of SOCS-1 was attributable not only to the inhibition of STAT3 but also to that of p38 MAPK activity, and chemical inhibitors of JAK/STAT and p38 MAPK signaling effectively suppressed proliferation of these GC cells. Furthermore, treatment with AdSOCS-1 in vivo significantly suppressed GC proliferation in a xenograft model. These results suggest that SOCS-1 gene methylation is a critical step in the development of GC, and enforced expression of SOCS-1 may represent a novel therapeutic approach for the treatment of GC.

519. PMID 20354000
Inflammatory bowel disease is characterized by chronic inflammation which predisposes to colorectal cancer. The mechanisms by which inflammation promotes tumorigenesis are not fully known. We aimed to investigate the links between colonic inflammation and tumorigenesis via epigenetic gene silencing. Colon cancer specimens were assessed for the expression of DNA methyltransferase-1 (DNMT-1) using immunohistochemistry. Colorectal carcinoma cell lines were assessed for DNMT1 expression, methylcytosine content, promoter methylation, gene expression, and tumorigenesis in response to interleukin (IL)-6. DNMT1 was expressed at higher levels in both the peritumoral stroma and tumor in inflammatory bowel disease-associated cancers compared with sporadic colon cancers. IL-6 treatment of colon cancer cells resulted in an increase in DNMT1 expression, independent of de novo gene expression. IL-6 increased the methylation of promoter regions of genes associated with tumor suppression, adhesion, and apoptosis resistance. Expression of a subset of these genes was downregulated by IL-6, an effect that was prevented by preincubation with 5-azadeoxycytidine, a DNMT1 inhibitor. Anchorage-independent growth and migration of colon cancer cells was also increased by IL-6 in a 5-azadeoxycytidine-sensitive manner. Our results indicate that DNMT-mediated gene silencing may play a role in inflammation-associated colon tumorigenesis.

520. PMID 21098398
Inhibitor of DNA binding protein 4 (ID4) is a member of the dominant-negative basic helix-loop-helix transcription factor family that lacks DNA binding activity and has tumor suppressor function. ID4 promoter methylation has been reported in acute myeloid leukemia and chronic lymphocytic leukemia (CLL), although the expression, function, and clinical relevance of this gene have not been characterized in either disease. We demonstrate that the promoter of ID4 is consistently methylated to various degrees in CLL cells, and increased promoter methylation in a univariable analysis correlates with shortened patient survival. However, ID4 mRNA and protein expression is uniformly silenced in CLL cells irrespective of the degree of promoter methylation. The crossing of ID4(+/-) mice with E?-TCL1 mice triggers a more aggressive murine CLL as measured by lymphocyte count and inferior survival. Hemizygous loss of ID4 in nontransformed TCL1-positive B cells enhances cell proliferation triggered by CpG oligonucleotides and decreases sensitivity to dexamethasone-mediated apoptosis. Collectively, this study confirms the importance of the silencing of ID4 in murine and human CLL pathogenesis.

521. PMID 20890895
Insulin resistance (IR) and mitochondrial dysfunction play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). We hypothesized that genetic factors and epigenetic modifications occurring in the liver contribute to the IR phenotype. We specifically examined whether fatty liver and IR are modified by hepatic DNA methylation of the peroxisome proliferator-activated receptor ? coactivator 1? (PPARGC1A) and mitochondrial transcription factor A (TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case-control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of real-time PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.

522. PMID 20890895
Insulin resistance (IR) and mitochondrial dysfunction play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). We hypothesized that genetic factors and epigenetic modifications occurring in the liver contribute to the IR phenotype. We specifically examined whether fatty liver and IR are modified by hepatic DNA methylation of the peroxisome proliferator-activated receptor ? coactivator 1a (PPARGC1A) and mitochondrial transcription factor A (TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case-control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of real-time PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Conclusion: Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR.

523. PMID 21095038
Insulin-like growth factor binding protein 7 (IGFBP7) was considered a tumor suppressor gene in lung cancer. However, the mechanism responsible for the downregulation of this gene has not yet been fully understood. In this study, we analyzed the epigenetic inactivation of IGFBP7 expression in human lung cancer. We found that 14 out of 16 lung cancer cell lines showed decreased expression of IGFBP7 compared to control cells by real-time RT-PCR, and 42 out of 90 patients (46.7%) with primary lung tumor exhibited negative staining of IGFBP7 by immunohistochemistry analysis. The IGFBP7 expression could be restored by demethylation agent 5-aza-2'-deoxycytidine (DAC) in 7 cancer cell lines. Methylation status of IGFBP7 was further evaluated by bisulfite sequencing (BS) and methylation-specific-PCR (MSP). It turned out that low expression of IGFBP7 was associated with DNA methylation in lung cancer cell lines and in primary lung tumors (P=0.019). To explore the regulatory role of p53 on IGFBP7, we transfected a wild type p53 expression vector into lung cancer cell lines H1299, H2228, and H82. Forced expression of p53 increased IGFBP7 expression only in H82 harboring no IGFBP7 methylation, while transfection in combination with DAC induced the expression of IGFBP7 in H1299 and H2228, in which IGFBP7 was methylated. Additionally, treatment with p53 inducer adriamycin (ADR) alone or in combination with DAC increased the expression of IGFBP7 in the 3 cell lines. Our data suggest that IGFBP7 is inactivated in lung cancer by DNA hypermethylation in both lung cancer cell lines and primary lung tumors, and IGFBP7 might be regulated by p53 in lung cancer cells.

524. PMID 21975548
Integrin alpha9 (ITGA9) is one of the less studied integrin subunits that facilitates accelerated cell migration and regulates diverse biological functions such as angiogenesis, lymphangiogenesis, cancer cell proliferation and migration. In this work, integrin alpha9 expression and its epigenetic regulation in normal human breast tissue, primary breast tumors and breast cancer cell line MCF7 were studied. It was shown that integrin alpha9 is expressed in normal human breast tissue. In breast cancer, ITGA9 expression was downregulated or lost in 44% of tumors while another 45% of tumors showed normal or increased ITGA9 expression level (possible aberrations in the ITGA9 mRNA structure were supposed in 11% of tumors). Methylation of ITGA9 CpG-island located in the first intron of the gene was shown in 90% of the breast tumors with the decreased ITGA9 expression while no methylation at 5'-untranslated region of ITGA9 was observed. 5-aza-dC treatment restored integrin alpha9 expression in ITGA9-negative MCF7 breast carcinoma cells, Trichostatin A treatment did not influenced it but a combined treatment of the cells with 5-aza-dC/Trichostatin A doubled the ITGA9 activation. The obtained results suggest CpG methylation as a major mechanism of integrin alpha9 inactivation in breast cancer with a possible involvement of other yet unidentified molecular pathways.

525. PMID 22321265
Introduction: Idiopathic thrombocytopenic purpura (ITP) is an organ-specific autoimmune hemorrhagic disease characterized by breakdown of self-tolerance and triggering autoreactive lymphocytes' response against platelets. The underlying etiology of ITP remains largely unknown. DNA methylation plays an essential role in maintaining T-cell function, and impaired methylation can lead to inappropriate gene expression and contribute to T-cell autoreactivity and autoimmunity. The aim of this study was to evaluate the role of DNA methyltransferase 3A gene expression in the pathogenesis of ITP. Methods: This study included 60 subjects: 20 healthy volunteers as a control group, 20 patients with acute ITP, and 20 patients with chronic ITP. DNA methyltransferase 3A (DNMT3A) mRNA expression in peripheral blood mononuclear cells was measured by real-time quantitative polymerase chain reaction. Plasma S-adenosylhomocysteine (SAH) levels were assayed with reversed-phase high-performance liquid chromatography. Results: DNMT3A mRNA expression was significantly decreased in patients with ITP as compared with that of the control group. Plasma SAH level was significantly elevated in patients with ITP than in healthy controls. However, no significant difference was found in DNMT3A mRNA expression or plasma SAH level between patients with acute and chronic ITP. Conclusions: Aberrant DNA methylation status reflected by decreased mRNA expression of DNMT3A and increased plasma SAH level may play an important role in the pathogenesis of ITP, although the precise underlying mechanisms still await further investigations, and extensive work in this field is clearly needed to provide novel therapeutic targets for ITP.

526. PMID 19294736
Invasive lobular carcinoma (ILC) of the breast is believed to develop from in situ lesions, atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS). Down-regulation of the cell-cell adhesion protein E-cadherin is a defining feature of lobular breast cancer (LBC) and already occurs in ALH and LCIS. Apart from mutational mechanisms, epigenetic silencing of the E-cadherin gene (CDH1) is thought to be involved in E-cadherin down-regulation and has been observed at a high frequency in ILC. Whether CDH1 promoter methylation is already present in in situ lesions and thus contributes to the initiation of LBC is not established. We thus examined microdissected archived tissue from 20 LBCs by methylation-specific PCR to determine the CDH1 methylation status of lobular lesions. Nineteen of the 20 LBCs had a hypermethylated CDH1 promoter, including 13/14 ILCs and 13/13 ALHs or LCIS. Bisulphite sequencing indicated that methylation was complete within the investigated promoter fragment. Intriguingly, CDH1 methylation was likewise present in 8/8 adjacent non-neoplastic epithelia, but not in 6/6 mammary epithelia from healthy subjects. E-cadherin protein and mRNA were down-regulated in in situ lesions relative to adjacent epithelia. Together, these results indicate that CDH1 promoter methylation occurs in LBC prior to E-cadherin down-regulation and neoplastic formation. We thus propose that epigenetic silencing represents the first of the two hits required to silence both CDH1 alleles for LBC to develop. Because promoter methylation is in principle reversible, our findings suggest that chemoprevention of LBC by epigenetic drugs should be feasible. Furthermore, the presence of CDH1 methylation in pre-neoplastic epithelia suggests the existence of mammary regions with increased disease susceptibility, providing an explanation for the often multifocal presentation of LBC.

527. PMID 18243403
It has been analyzed the frequency of p16 inactivation in 67 blood samples of patients diagnosed with advanced non-small cell lung cancer (NSCLC), to establish the relationship between p16 inactivation and time to progression (TTP) and overall survival (OS), and its relationship with various clinical parameters. This is a retrospective study of 67 patients diagnosed with advanced NSCLC between August 2000 and July 2003 in the Hospital General de Valencia analysing p16 inactivation by assessing in plasma either loss of heterozygosity (LOH) or p16 promoter methylation. The study shows p16 inactivation in 28.3% (either by LOH or by p16 methylation). No significant differences were found between the group with p16 inactivation and the group without p16 inactivation, either in patients' TTP (31 weeks vs. 24 weeks; p=0.7) or in OS (53 weeks vs. 43 weeks; p=0.48). No relationship was found between the state of p16 and the clinical parameters analyzed (stage, ECOG, histology). Despite the fact that p16 is important in NSCLC carcinogenesis, the data obtained in our study do not allow the prognostic impact of this biological marker to be established.

528. PMID 22048248
It has been proposed that the existence of stem cell epigenetic patterns confer a greater likelihood of CpG island hypermethylation on tumor suppressor-coding genes in cancer. The suggested mechanism is based on the Polycomb-mediated methylation of K27 of histone H3 and the recruitment of DNA methyltransferases on the promoters of tumor suppressor genes in cancer cells, when those genes are preferentially pre-marked in embryonic stem cells (ESCs) with bivalent chromatin domains. On the other hand, miRNAs appear to be dysregulated in cancer, with many studies reporting silencing of miRNA genes due to aberrant hypermethylation of their promoter regions. We wondered whether a pre-existing histone modification profile in stem cells might also contribute to the DNA methylation-associated silencing of miRNA genes in cancer. To address this, we examined a group of tumor suppressor miRNA genes previously reported to become hypermethylated and inactivated specifically in cancer cells. We analyzed the epigenetic events that take place along their promoters in human embryonic stem cells and in transformed cells. Our results suggest that there is a positive correlation between the existence of bivalent chromatin domains on miRNA promoters in ESCs and the hypermethylation of those genes in cancer, leading us to conclude that this epigenetic mark could be a mechanism that prepares miRNA promoters for further DNA hypermethylation in human tumors.

529. PMID 21117136
It has been suggested that lead (Pb) exposure in early life may increase amyloid precursor protein (APP) expression and promote the pathogenesis of Alzheimer's disease in old age. The current study examined whether the DNA methylation patterns of APP gene in rat pheochromocytoma (PC12) cells changed after Pb acetate exposure. Undifferentiated PC12 cells were exposed to three doses of Pb acetate (50, 250, and 500 nM) and one control for 2 days or 1 week. The methylation patterns of APP promoter and global DNA methylation were analyzed. The DNA methyltransferase 1 (DNMT1) expression and the level of amyloid ß peptide (Aß) were also investigated. The results showed that the exposure of the three concentrations of Pb acetate could make the APP promoter hypomethylated. The global DNA methylation level and the expression of DNMT1 were changed in the 500 nM group after 2 days exposure and in the 250 and 500 nM group after 7 days exposure. Thus, Pb may exert neurotoxic effects through mechanisms that alter the global and promoter methylation patterns of APP gene. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

530. PMID 19051286
It has recently been proposed that the SSAT gene plays a role in the predisposition to suicidal behavior. SSAT expression was found to be down-regulated in the brain of suicide completers. In addition, a single nucleotide polymorphism (SNP) rs6526342 was associated both with variation in SSAT expression and with suicidal behavior. In this study, we aimed to characterize the relationship between SSAT dysregulation and suicide behavior. To this end, we measured SSAT expression levels in the ventral prefrontal cortex (VPFC) of suicide completers (n = 20) and controls (n = 20) and found them to be significantly down-regulated in suicide victims (P = 0.007). To identify the basis of the regulation of SSAT expression, we performed an association analysis of 309 SNPs with SSAT transcript levels in 53 lymphoblastoid cell lines from the CEPH collection. We then examined the methylation status of the SSAT promoter region in males and females suicide completers and control subjects whose SSAT brain expression had been measured. We found no evidence to support a role for SNPs in controlling the level of SSAT expression. SSAT promoter methylation levels were not different between suicide completers and controls and did not correlate with SSAT expression levels. In addition, we found no indication of a genetic association between suicidal behavior and SNPs located within the SSAT gene. Our study provides new results which show that dysregulation of SSAT expression does play a role in suicide behavior. However, our data do not support any association between rs6526342 and variation in SSAT expression or suicidal behavior.

531. PMID 21362226
It is hard to discriminate myelodysplastic syndrome(MDS) from many benign hematological diseases. To identify the methylation status of zo-1 gene in MDS, the methylation specific PCR (MS-PCR) and reverse transcription-PCR (RT-PCR) were applied to detect the MDS cell line MUTZ-1, bone marrow of a healthy donor and an aplastic anemia patient. MS-PCR was also employed to detect the bone marrow of 72 patients with benign hematological diseases, 35 MDS-RA patients, and 20 MDS-like patients. The results showed that MDS cell line MUTZ-1 displayed complete methylation of zo-1 promoter without mRNA expression. Inversely, a patient with benign hematological disease and a donor with normal bone marrow showed complete unmethylation of this gene with unaffected mRNA expression. No zo-1 promoter methylation was detected in patients with benign hematological diseases, while aberrant hypermethylation of zo-1 gene promoter were found in 48.6% (18/37) of MDS-RA patients. The positive rate of zo-1 methylation in MDS-RA patients was higher than that in patients with benign hematological diseases (p < 0.05). Seven suspected MDS patients manifested hypermethylation status of zo-1 gene (7/20), 2 were followed up for 1 year and transformed into MDS. It is concluded that relatively high hypermethylation rate of zo-1 promoter is observed in MDS-RA, and no methylation in patients with benign hematological diseases. Therefore, zo-1 gene hypermethylation may be served as a useful epigenetic marker in the differential diagnosis for MDS.

532. PMID 20206335
It is now understood that epigenetic alterations occur frequently in sporadic breast carcinogenesis, but little is known about the epigenetic alterations associated with familial breast tumors. We performed genome-wide DNA-methylation profiling on familial breast cancers (n = 33) to identify patterns of methylation specific to the different mutation groups (BRCA1, BRCA2, and BRCAx) or intrinsic subtypes of breast cancer (basal, luminal A, luminal B, HER2-amplified, and normal-like). We used methylated DNA immunoprecipitation (MeDIP) on Affymetrix promoter chips to interrogate methylation profiles across 25,500 distinct transcripts. Using a support vector machine classification algorithm, we demonstrated that genome-wide methylation profiles predicted tumor mutation status with estimated error rates of 19% (BRCA1), 31% (BRCA2), and 36% (BRCAx) but did not accurately predict the intrinsic subtypes defined by gene expression. Furthermore, using unsupervised hierarchical clustering, we identified a distinct subgroup of BRCAx tumors defined by methylation profiles. We validated these findings in the 33 tumors in the test set, as well as in an independent validation set of 47 formalin-fixed, paraffin-embedded familial breast tumors, by pyrosequencing and Epityper. Finally, gene-expression profiling and SNP CGH array previously performed on the same samples allowed full integration of methylation, gene-expression, and copy-number data sets, revealing frequent hypermethylation of genes that also displayed loss of heterozygosity, as well as of genes that show copy-number gains, providing a potential mechanism for expression dosage compensation. Together, these data show that methylation profiles for familial breast cancers are defined by the mutation status and are distinct from the intrinsic subtypes.

533. PMID 20423306
It is well established that aberrant gene regulation by epigenetic mechanisms can develop as a result of pathological processes such as cancer. Methylation of CpG islands is an important component of the epigenetic code and a number of genes become abnormally methylated during tumorigenesis. Some bioactive food components have been shown to have cancer inhibition activities by reducing DNA hypermethylation of key cancer-causing genes through their DNA methyltransferase (DNMT) inhibition properties. The dietary polyphenols, (-)-epigallocatechin- 3-gallate (EGCG) from green tea, genistein from soybean and possibly isothiocyanates from plant foods, are some examples of these bioactive food components modulated by epigenetic factors. The activity of cancer inhibition generated from dietary polyphenols is associated with gene reactivation through demethylation in the promoters of methylation-silenced genes such as p16INK4a and retinoic acid receptor beta. The effects of dietary polyphenols such as EGCG on DNMTs appear to have their direct inhibition by interaction with the catalytic site of the DNMT1 molecule, and may also influence methylation status indirectly through metabolic effects associated with energy metabolism. Therefore, reversal of hypermethylation-induced inactivation of key tumor suppression genes by dietary DNMT inhibitors could be an effective approach to cancer prevention and therapy. In this analysis, we focus on advances in understanding the effects of dietary polyphenols on DNA methylation modulation during the process of cancer development, which will offer exciting new opportunities to explore the role of diet in influencing the biology of cancer and to understand the susceptibility of the human epigenome to dietary effects.

534. PMID 20830616
It is well known that sonic hedgehog signaling pathway plays a vital role during early embryonic development. It is also responsible for stem cell renewal and development of several cancers like colorectal and breast carcinoma and major brain tumors as medulloblastoma and glioblastoma. The role of sonic hedgehog signaling in the development of neuroblastoma has not been thoroughly investigated. In this study, we attempted to determine the expression of Bmi-1 stem cell marker and of Shh pathway downstream target genes glioma-associated oncogene homolog 1 (GLI1), protein patched homolog 1 (PTCH1), Cyclin D2, plakoglobin (? catenin), NK2 homeobox 2 (NKX2.2), paired box gene 6 (PAX6), secreted frizzled-related protein 1 (SFRP1), and hedgehog interacting protein (HHIP) in 11 neuroblastoma cell lines and 41 neuroblastoma samples. Also, inhibition of the pathway was performed genetically by GLI1 knockdown siRNA or chemically by cyclopamine. After inhibition, low transcript expression was detected in downstream target genes like PTCH1, in the cell lines. We further preformed promoter methylation studies of Cyclin D2, PTCH1, HHIP, and SFRP1 genes by melting curve analysis-based methylation assay (MCA-Meth) and methylation-specific PCR (MSP). Results revealed no methylation in Cyclin D2 gene promoter in neuroblastoma samples or in cell lines; one cell line (MHH-NB-11) showed PTCH1 methylation; 3/11 (27%) cell lines and 9/41 (22%) neuroblastoma samples showed HHIP methylation; and 3/11 (27%) cell lines and 11/41 (27%) samples showed SFRP1 methylation. Taken together, our results suggest the possibility of two levels of control of the sonic hedgehog signaling pathway: transcriptional and epigenetic, which might offer new therapeutic possibilities to modulate the pathway and try to suppress tumor growth.

535. PMID 22429295
J Oral Pathol Med (2012) Objective: To evaluate relationships between the alteration of p16 gene and the clinical status and prognosis of the patients with squamous cell carcinoma of the buccal mucosa. Methods: Thirty buccal cancers were included in the analysis. Deletion analysis was performed by PCR. Point mutation analysis was used by PCR-SSCP and direct sequencing. Methylation-specific PCR methods were adopted for the evaluation of p16 methylation. The correlation between alteration of p16 gene and clinicopathological factors buccal cancer was evaluated by Fisher's exact test. Kaplan-Meier and Cox regression were used to investigate the relationship between p16 alteration and survival time. Results: The frequency of p16 alteration was 63.3% in buccal carcinomas. P16 deletion was associated significantly with tumor size (P = 0.01). P16 point mutation was associated significantly with differentiation (P = 0.006). P16 methylation was associated significantly with nodes metastasis (P = 0.027). The overall survival rate of 30 buccal carcinomas was 53.3%. The Log-rank test (P = 0.021) and univariate Cox regression analysis (P = 0.030) revealed that p16 methylation was significantly associated with the overall survival rate. Multivariate analysis showed that p16 deletion, p16 mutation, and p16 methylation were not statistically significant. Conclusions: The alterations of p16 gene may play a major role in malignancy and development and metastases of buccal carcinoma and may be an excellent marker of aggressive clinical behavior. P16 methylation has a prognostic value in buccal carcinoma but not an independent prognosis factor. P16 point mutation and p16 deletion have not prognostic significance in buccal carcinoma.

536. PMID 18769447
Janus kinase 2 (JAK2)V617F-activating mutations (JAK2mu) occur in myeloproliferative disorders (MPDs) and myelodysplastic syndromes (MDSs). Cell lines MB-02, MUTZ-8, SET-2 and UKE-1 carry JAK2V617F and derive from patients with MPD/MDS histories. Challenging the consensus that expression of JAK2V617F is the sole precondition for cytokine independence in class I cytokine receptor-positive cells, two of four of the JAK2mu cell lines were growth factor-dependent. These cell lines resembled JAK2wt cells regarding JAK2/STAT5 activation: cytokine deprivation effected dephosphorylation, whereas erythropoetin or granulocyte colony-stimulating factor induced phosphorylation of JAK2 and STAT5. Cytokine independence correlated with low expression and cytokine dependence with high expression of the JAK/STAT pathway inhibitor suppressor of cytokine signaling 2 (SOCS2) suggesting a two-step mechanism for cytokine independence of MPD cells: (i) activation of the oncogene JAK2V617F and (ii) inactivation of the tumor suppressor gene SOCS2. Confirming that SOCS2 operates as a negative JAK2V617F regulator, SOCS2 knockdown induced constitutive STAT5 phosphorylation in JAK2mu cells. CpG island hypermethylation is reported to promote SOCS gene silencing in malignant diseases. Accordingly, in one of two cytokine-independent cell lines and in two of seven MPD patients, we found SOCS2 hypermethylation associated with reduced promoter access to transcription factors. Our results provide solid evidence that SOCS2 epigenetic downregulation might be an important second step in the genesis of cytokine-independent MPD clones.

537. PMID 21506124
K-RAS and BRAF gene mutations are mandatory to set anti-EGFR therapy in metastatic colorectal cancer (mCRC) patients. Due to the relationship of these mutations with tumor epigenotype, we hypothesized the potential role of oncosuppressor methylation of genes involved in K-RAS/BRAF pathway (CDKN2A, RASSF1A, and RARbeta suppressor genes) in inhibiting EGFR signaling cascade. Primary tumor and synchronous liver metastatic tissues of 75 mCRC patients were characterized for promoter methylation by QMSP and for K-RAS and BRAF mutations. RARbeta, RASSF1A, and CDKN2A genes were methylated in 82%, 35%, and 26% of primary tumors, respectively. RASSF1A resulted significantly more frequently methylated in liver metastasis than in primary site (P=0.015), while RARbeta was significantly lower methylated in distant metastasis (P=1.2?×?10(-6)). As regards methylation content, RASSF1A methylation status was significantly higher in liver metastasis with respect to primary tumor (P=0.000) underlying the role of this gene in liver metastatic progression. In our series K-RAS and BRAF were mutated in 39% and 4% of cases, respectively. Methylation frequencies seemed to be unrelated to gene mutations; on the other hand, RASSF1A mean content methylation resulted significantly higher in liver than in primary tumor (288.78 vs. 56.23, respectively, P=0.05) only in K-RAS wild-type cases sustaining a specific role of this gene in metastatic site thus supporting its function in strengthening the apoptotic role of K-RAS. These evidences held the role of oncosuppressor methylation in both colon tumorigenesis and progression and suggested that epigenetic events should be taken into account when biological therapies in mCRC patients have to be set.

538. PMID 17998247
KH-type splicing regulatory protein (KSRP) is closely related to chick zipcode-binding protein 2 and rat MARTA1, which are involved in neuronal transport and localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. KSRP is a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing and mRNA decay. More specifically, KSRP is an essential factor for targeting AU-rich element-containing mRNAs to the exosome. We report here that KSRP is arginine methylated and interacts with the Tudor domain of SMN, the causative gene for spinal muscular atrophy (SMA), in a CARM1 methylation-dependent fashion. These two proteins colocalize in granule-like foci in the neurites of differentiating neuronal cells and the CARM1 methyltransferase is required for normal localization of KSRP in neuronal cells. Strikingly, this interaction is abrogated by naturally-occurring Tudor domain mutations found in human patients affected with severe Type I SMA, a strong indication of its functional significance to the etiology of the disease. We also report for the first time that Q136E and I116F Tudor mutations behave similarly to the previously characterized E134K mutation, and cause loss of Tudor interactions with several cellular methylated proteins. Finally, we show that KSRP is misregulated in the absence of SMN, and this correlated with increased mRNA stability of its mRNA target, p21(cip1/waf1), in spinal cord of mild SMA model mice. Our results suggest SMN can act as a molecular chaperone for methylated proteins involved in RNA metabolism and provide new insights into the pathophysiology of SMA.

539. PMID 21683672
KISS1 is a metastasis suppressor gene that is lost in several malignancies, including bladder cancer. We tested the epigenetic silencing hypothesis and evaluated the biological influence of KISS1 methylation on its expression and clinical relevance in bladder cancer. KISS1 hypermethylation was frequent in bladder cancer cells analyzed by methylation-specific PCR and bisulfite sequencing and was associated with low gene expression, being restored in vitro by demethylating azacytidine. Hypermethylation was also frequently observed in a large series of bladder tumors (83.1%, n = 804). KISS1 methylation was associated with increasing stage (P = 0.001) and tumor grade (P = 0.010). KISS1 methylation was associated with low KISS1 transcript expression by quantitative RT-PCR (P = 0.037). KISS1 transcript expression was also associated with histopathological tumor stage (P < 0.0005). Low transcript expression alone (P = 0.003) or combined with methylation (P = 0.019) was associated with poor disease-specific survival (n = 205). KISS1 transcript expression remained an independent prognosticator in multivariate analyses (P = 0.017). KISS1 hypermethylation was identified in bladder cancer, providing a potential mechanistic explanation (epigenetic silencing) for the observed loss of KISS1 in uroepithelial malignancies. Associations of KISS1 methylation and its expression with histopathological variables and poor survival suggest the utility of incorporating KISS1 measurement using paraffin-embedded material for tumor stratification and clinical outcome prognosis of patients with uroepithelial neoplasias.

540. PMID 22042362
Klotho is a single pass transmembrane protein, associated with premature aging. We identified tumor suppressor activities for klotho, associated with reduced expression in breast cancer. We now aimed to analyze klotho expression in early stages of breast tumorigenesis and elucidate mechanisms leading to klotho silencing in breast tumors. We studied klotho expression, using immunohistochemistry, and found high klotho expression in all normal and mild hyperplasia samples, whereas reduced expression was associated with moderate and atypical ductal hyperplasia. Promoter methylation and histone deacetylation were studied as possible mechanisms for klotho silencing. Using bisulfite sequencing, and methylation-specific PCR, we identified KLOTHO promoter methylation in five breast cancer cell lines and in hyperplastic MCF-12A cells, but not in the non-tumorous mammary cell line HB2. Importantly, methylation status inversely correlated with klotho mRNA levels, and treatment of breast caner cells with 5-aza-2-deoxycytidine elevated klotho expression by up to 150-fold. KLOTHO promoter methylation was detected in 8/23 of breast cancer samples but not in normal breast samples. Chromatin immunoprecipitation revealed that in HB2 KLOTHO promoter was enriched with AcH3K9; however, in breast cancer cells, H3K9 was deacetylated, and treatment with the histone deacetylase inhibitor suberoylanilide bishydroxamide (SAHA) restored H3K9 acetylation. Taken together, these data indicate loss of klotho expression as an early event in breast cancer development, and suggest a role for DNA methylation and histone deacetylation in klotho silencing. Klotho expression and methylation may, therefore, serve as early markers for breast tumorigenesis.

541. PMID 21191688
Knowledge about the molecular profile of tumor tissues is crucial to effectively target cancer cells, because cancer is a genetic disease that involves multiple genetic and epigenetic alterations. Prominent aberrations include gene mutation, amplification, loss or deletion, as well as epigenetic alterations of the promoter DNA CpG islands. All of these aberrations can lead to dynamic changes in cancer cells, as demonstrated using resected tumor samples. There are two distinct pathological types of gastric cancer: the diffuse type and the intestinal type of gastric cancer. Diffuse type gastric cancer harbors aberrations in the FGFR2/ErbB3/PI3 kinase pathway, while intestinal type gastric cancer has an activated ErbB2 oncogenic pathway. On the other hand, the prometastatic oncogene PRL-3 is commonly activated in both types of advanced gastric cancer, and might represent a relevant therapeutic target for gastric cancer with lymph node metastasis or peritoneal dissemination. Numerous tumor suppressor genes can inhibit such oncogenic pathways, and DNA methylation in CpG islands of gene promoters is frequently found to suppress the expression of such genes in gastric cancer. Helicobacter pylori infection in normal gastric mucosa may cause p53 mutations through activation of activation-induced cytidine deaminase (AID) and/or promoter DNA methylation of E-cadherin, an initiator of gastric cancer, and such abnormalities are found even in the precancerous stage of gastric carcinogenesis. In addition, it has been demonstrated that there are highly relevant methylation genes involved in cancer (HRMGs) that exhibit very frequent cancer-specific methylation in gastric cancer. Such genes are potential targets for cancer treatment, and might also serve as biomarkers of gastric cancer for either the diagnosis or for determining the prognosis or the response to treatment.

542. PMID 21993314
Krüppel-like factor 5 (KLF5) has been implicated as a tumor suppressor in various solid tumors such as breast and prostate, and recent studies have demonstrated a role for this protein in neutrophil differentiation of acute promyelocytic leukemia cells in response to ATRA. Here, we show that KLF5 expression increases during primary granulocyte differentiation and that expression of KLF5 is a requirement for granulocyte differentiation of 32D cells. In AML, we show that KLF5 mRNA expression levels are reduced in multiple French-American-British subtypes compared to normal controls, and also in leukemic stem cells relative to normal hematopoietic stem cells. We demonstrate that in selected AML cases, reduced expression is associated with hypermethylation of the KLF5 locus in the proximal promoter and/or intron 1, suggesting that this may represent a Class II genetic lesion in the development of AML.

543. PMID 20592034
L3MBTL1, a paralogue of Drosophila tumor suppressor lethal(3)malignant brain tumor (l(3)mbt), binds histones in a methylation state-dependent manner and contributes to higher order chromatin structure and transcriptional repression. It is the founding member of a family of MBT domain-containing proteins that has three members in Drosophila and nine in mice and humans. Knockdown experiments in cell lines suggested that L3MBTL1 has non-redundant roles in the suppression of oncogene expression. We generated a mutant mouse strain that lacks exons 13-20 of L3mbtl1. Markedly reduced levels of a mutant mRNA with an out-of-frame fusion of exons 12 and 21 were expressed, but a mutant protein was undetectable by Western blot analysis. L3MBTL1(-/-) mice developed and reproduced normally. The highest expression of L3MBTL1 was detected in the brain, but its disruption did not affect brain development, spontaneous movement, and motor coordination. Despite previous implications of L3mbtl1 in the biology of hematopoietic transcriptional regulators, lack of L3MBTL1 did not result in deficiencies in lymphopoiesis or hematopoiesis. In contrast with its demonstrated biochemical activities, embryonic stem (ES) cells lacking L3MBTL1 displayed no abnormalities in H4 lysine 20 (H4K20) mono-, di-, or trimethylation; had normal global chromatin density as assessed by micrococcal nuclease digests; and expressed normal levels of c-myc. Embryonic fibroblasts lacking L3MBTL1 displayed unaltered cell cycle arrest and down-regulation of cyclin E expression after irradiation. In cohorts of mice followed for more than 2 years, lack of L3MBTL1 did not alter normal lifespan or survival with or without sublethal irradiation.

544. PMID 21159062
LMX1A is epigenetically inactivated in cervical cancer. However, the expression and methylation status of LMX1A in gastric cancer tissues remains unknown. In the present study, we found that the expression of LMX1A was significantly decreased in gastric cancer tissues compared with normal tissues. A statistically significant inverse association was found between the LMX1A methylation status and expression of LMX1A in tumor tissues (P = 0.008). Restoration of LMX1A induced cell apoptosis and suppressed anchorage-independent growth, suggesting LMX1A may be a potential biomarker for gastric cancer.

545. PMID 22343415
Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

546. PMID 21617852
Laminin-332 (LM-332, formerly termed laminin-5) is a heterotrimeric glycoprotein that regulates cell adhesion and migration. Molecular alterations of LM-332 are involved in cancer progression. The aim of this study was to clarify alterations of LM-332 in gastric carcinoma. The expression of LM-332 subunits in 10 gastric carcinoma cell lines was investigated by RT-PCR, Western blotting, and immuno-cytochemical/immunofluorescent analyses. The promoter methylation status of LM-332-encoding genes (LAMA3, LAMB3 and LAMC2) was analyzed by methylation-specific PCR (MSP). The relationship between cell migration and LM-332 expression was assessed by the scratch assay. The expression of LM-332 was analyzed immunohistochemically in 90 gastric cancer tissues. Co-expression of laminin ß3 and ?2 chains was often observed in gastric carcinoma cell lines at mRNA and protein levels. In contrast, there was no expression of laminin a3 at either the mRNA or protein levels. Extra-cellular secretion of laminin ß3 and ?2 chains was found in 2 of the 10 cell lines. The LAMA3 gene was transcriptionally silenced by methylation of the promoter CpG islands in all of the cell lines, while the LAMB3 and LAMC2 genes were silenced in several cell lines. Treatment with a demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), restored expression of the LM-332-encoding genes. Methylation frequency of LAMA3 was higher than those of the LAMB2 and LAMC2 genes in gastric cancer tissues. Migration distances were significantly correlated with cytoplasmic laminin ?2 chain expression. Immunohistochemistry showed frequent co-expression of laminin ß3 and ?2 chains in gastric carcinoma cells, which was significantly correlated with depth of invasion and advanced tumor stage. The results suggest that the laminin ß3 and ?2 chains accumulate intracellularly and play a role in gastric cancer progression, while epigenetic silencing of the laminin a3 chain may lead to inability to synthesize the basement membrane and may affect cancer cell invasion. Cancer cell motility appears to be associated with the cyto-plasmic laminin ?2 chain in vitro.

547. PMID 20393566
Large intervening non-coding RNAs (lincRNAs) are pervasively transcribed in the genome yet their potential involvement in human disease is not well understood. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodelling activities. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumours and metastases, and HOTAIR expression level in primary tumours is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb repressive complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings indicate that lincRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.

548. PMID 20573497
Late-onset Alzheimer's disease seems to be a multi-factorial disease with both genetic and non-genetic, environmental, possible causes. Recently, epigenomics is achieving a major role in Alzheimer's research due to its involvement in different molecular pathways leading to neurodegeneration. Among the different epigenetic modifications, DNA methylation is one of the most relevant to the disease. We previously demonstrated that presenilin1 (PSEN1), a gene involved in amyloidogenesis, is modulated by DNA methylation in neuroblastoma cells and Alzheimer's mice in an experimental model of nutritionally altered one-carbon metabolism. This alteration, obtained by nutritional deficiency of B vitamins (folate, B12 and B6) hampered S-adenosylmethionine (SAM)-dependent methylation reactions. The aim of the present paper was to investigate the regulation of DNA methylation machinery in response to hypomethylating (B vitamin deficiency) and hypermethylating (SAM supplementation) alterations of the one-carbon metabolism. We found that DNA methylases (DNMT1, 3a and 3b) and a putative demethylase (MBD2) were differently modulated, in line with the previously observed changes of PSEN1 methylation pattern in the same experimental conditions.

549. PMID 21419475
Leucine zipper putative tumor suppressor 1 is down-regulated by promoter methylation, but not frequently, in human malignancies, including breast cancer. Recent studies suggest that leucine zipper putative tumor suppressor 1 is a candidate for the metastasis modifier locus on human chromosome 8p in melanoma. In this study, we evaluated whether leucine zipper putative tumor suppressor 1 plays a role in breast cancer metastasis. We found that leucine zipper putative tumor suppressor 1 protein expression was significantly reduced or absent in a series of 340 invasive breast carcinomas compared to normal breast tissue. Lower levels of leucine zipper putative tumor suppressor 1 correlated with high histologic grade, lymph node metastasis, and poor prognosis. Functional studies demonstrated that ectopic expression of leucine zipper putative tumor suppressor 1 in the highly malignant MDA-MB-231 breast cancer cell line suppressed cell proliferation, migration, and invasion in vitro. Expression of leucine zipper putative tumor suppressor 1 in MDA-MB-231 cells also induced a series of changes that are characteristic of mesenchymal-to-epithelial transition, including phenotypic change, up-regulation of epithelial markers E-cadherin, ß-catenin, and cytokeratin and down-regulation of the mesenchymal marker vimentin. Expression of leucine zipper putative tumor suppressor 1 also repressed the transcription of Slug and Snail, which both repress E-cadherin expression during epithelial-to-mesenchymal transition. These findings suggest that epithelial-to-mesenchymal transition likely inhibits breast cancer metastasis by intervening in epithelial-to-mesenchymal transition in breast cancer.

550. PMID 22374749
Little is known about the molecular events occurring in the metastases of human tumors. Epigenetic alterations are dynamic lesions that change over the natural course of the disease, and so they might play a role in the biology of cancer cells that have departed from the primary tumor. Herein, we have adopted an epigenomic approach to identify some of these changes. Using a DNA methylation microarray platform to compare paired primary tumor and lymph node metastatic cell lines from the same patient, we observed cadherin- 11 promoter CpG island hypermethylation as a likely target of the process. We found that CDH11 DNA methylation-associated transcriptional silencing occurred in the corresponding lymph node metastases of melanoma and head and neck cancer cells, but not in the primary tumors. Using in vitro and in vivo cellular and mouse models for depleted or enhanced CDH11 activity, we also demonstrated that CDH11 acts as an inhibitor of tumor growth, motility and dissemination. Most importantly, the study of CDH11 5'-CpG island hypermethylation in primary tumors and lymph node metastases of cancer patients showed this epigenetic alteration to be significantly confined to the disseminated cells. Overall, these results indicate the existence of metastasisspecific epigenetic events that might contribute to the progression of the disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

551. PMID 21435086
Liver metastasis is a fatal step in the progression of colorectal cancer (CRC); however, the epigenetic evolution of this process is largely unknown. To decipher the epigenetic alterations during the development of liver metastasis, the DNA methylation status of 12 genes, including 5 classical CpG island methylator phenotype (CIMP) markers, was analyzed in 62 liver metastases and in 78 primary CRCs (53 stage I-III; 25 stage IV). Genome-wide methylation analysis was also performed in stage I-III CRCs and in paired primary and liver metastatic cancers. Methylation frequencies of MGMT and TIMP3 increased progressively from stage I-III CRCs to liver metastasis (P = 0.043 and P = 0.028, respectively). The CIMP-positive cases showed significantly earlier recurrence of disease than did CIMP-negative cases with liver metastasis (P = 0.030), whereas no such difference was found in stage I-III CRCs. Genome-wide analysis revealed that more genes were methylated in stage I-III CRCs than in paired stage IV samples (P = 0.008). Hierarchical cluster analysis showed that stage I-III CRCs and stage IV CRCs were clustered into two distinct subgroups, whereas most paired primary and metastatic cancers showed similar methylation profiles. This analysis revealed distinct methylation profiles between stage I-III CRCs and stage IV CRCs, which may reflect differences in epigenetic evolution during progression of the disease. In addition, most methylation status in stage IV CRCs seems to be established before metastasis.

552. PMID 21147764
Liver tumors from a previous National Toxicology Program study were examined using global gene expression and mutation analysis to define the mechanisms of carcinogenesis in mice exposed to oxazepam. Five hepatocellular adenomas and 5 hepatocellular carcinomas from male B6C3F1 mice exposed to 5000 ppm oxazepam and 6 histologically normal liver samples from control animals were examined. One of the major findings in the study was upregulation of the Wnt/ß-catenin signaling pathway. Genes that activate ß-catenin, such as Sox4, were upregulated, whereas genes that inhibit Wnt signaling, such as APC and Crebbp, were downregulated. In addition, liver tumors from oxazepam-exposed mice displayed ß-catenin mutations and increased protein expression of glutamine synthetase, a downstream target in the Wnt signaling pathway. Another important finding in this study was the altered expression of oxidative stress-related genes, specifically increased expression of cytochrome p450 genes, including Cyp1a2 and Cyp2b10, and decreased expression of genes that protect against oxidative stress, such as Sod2 and Cat. Increased oxidative stress was confirmed by measuring isoprostane expression using mass spectrometry. Furthermore, global gene expression identified altered expression of genes that are associated with epigenetic mechanisms of cancer. There was decreased expression of genes that are hypermethylated in human liver cancer, including tumor suppressors APC and Pten. Oxazepam-induced tumors also exhibited decreased expression of genes involved in DNA methylation (Crebbp, Dnmt3b) and histone modification (Sirt1). These data suggest that formation of hepatocellular adenomas and carcinomas in oxazepam-exposed mice involves alteration of the Wnt signaling pathway, oxidative stress, and potential epigenetic alterations.

553. PMID 22647391
Long interspersed nuclear element 1 (LINE-1) retrotransposons are mutagens that are capable of generating deleterious mutations by inserting themselves into genes and affecting gene function in the human genome. In normal cells, the activity of LINE-1 retrotransposon is mostly repressed, maintaining a stable genome structure. In contrast, cancer cells are characterized by aberrant expression of LINE-1 retrotransposons, which, in principle, have the potential to contribute to genomic instability. The mechanistic pathways that regulate LINE-1 expression remain unclear. Using deep-sequencing small RNA analysis, we identified a subset of differentially expressed endo-siRNAs that directly regulate LINE-1 expression. Detailed analyses suggest that these endo-siRNAs are significantly depleted in human breast cancer cells compared with normal breast cells. The overexpression of these endo-siRNAs in cancer cells markedly silences endogenous LINE-1 expression through increased DNA methylation of the LINE-1 5'-UTR promoter. The finding that endo-siRNAs can silence LINE-1 activity through DNA methylation suggests that a functional link exists between the expression of endo-siRNAs and LINE-1 retrotransposons in human cells.

554. PMID 20942961
Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFa) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2'deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFa, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFa activated HIV at least twice as well as TNFa alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFa plus Aza-CdR moderately decreased activation compared to TNFa alone. Surprisingly, a much greater reduction of TNFa-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFa induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs.

555. PMID 20209601
Loss of 16q is one of the most frequent alterations in many malignancies including hepatocellular carcinomas (HCC), suggesting the existence of a tumor suppressor gene (TSG) within the frequently deleted region. In this report we describe the identification and characterization of one candidate TSG, tyrosine aminotransferase gene (TAT), at 16q22.1. Loss of one TAT allele was detected in 27/50 (54%) of primary HCCs by quantitative real-time polymerase chain reaction. In addition, homo-deletion of TAT alleles was detected in two cases. Down-regulation of TAT was detected in 28/50 (56%) of HCCs, which was significantly associated with the loss of TAT allele and hypermethylation of TAT 5' CpG island (CGI) region (P <; 0.001). Functional studies found that TAT has a strong tumor suppressive ability. Introduction of the TAT gene into HCC cell lines could effectively inhibit colony formation in soft agar, foci formation, and tumor formation in nude mice. Further study found that the tumor suppressive mechanism of TAT was associated with its proapoptotic role in a mitochondrial-dependent manner by promoting cytochrome-c release and activating caspase-9 and PARP. CONCLUSION: Taken together, our findings suggest that TAT plays an important suppressive role in the development and progression of HCC.

556. PMID 22290228
Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

557. PMID 18425332
Loss of T-cadherin expression has been reported in a number of human cancers. We previously reported that T-cadherin re-expression suppressed cell growth and motility in glioma. Here, we report that the T-cadherin expression was significantly decreased in human hepatocellular carcinoma (HCC) compared to adjacent normal liver. In addition, T-cadherin expression in HCC with metastasis was significantly lower than in HCC without metastasis. To determine the mechanism underlying the reduced T-cadherin expression in HCC, we examined T-cadherin promoter methylation. We found that methylation of the T-cadherin promoter was present in 40% of HCC, but absent in all adjacent liver tissues. In the HCC with T-cadherin promoter methylation, the T-cadherin expression was significantly decreased compared to HCC without methylation. To provide a functional link between T-cadherin promoter methylation and T-cadherin growth regulation, we used the HepG2 hepatoma cell line that exhibits T-cadherin promoter methylation. Treatment of HepG2 cells with the demethylating agent 5-aza-2-deoxycytidine resulted in increased T-cadherin expression and reduced cell proliferation. These results demonstrate that the T-cadherin down-regulation by promoter methylation is associated with the development and progression of HCC, and suggest that T-cadherin is an important tumor suppressor in liver cancer.

558. PMID 20970189
Loss of function mutations in CCAAT/enhancer binding protein alpha (CEBPA) have been identified in acute myeloid leukemia (AML) and bi-allelic (double) CEBPA mutations are associated with improved prognosis in cases of cytogenetically normal-AML. In a subset of AML patients lacking CEBPA mutations, core promotor methylation of CEBPA has been described and is associated with a gene expression profile similar to the mutated cases including the expression of T cell associated genes such as CD7. However, the overall incidence and pattern of CEBPA mutations and core promoter methylation has not been thoroughly explored in a larger subset of AML with expression of CD7. Here we describe a simple and clinically deployable CEBPA promoter methylation test and the results of combined testing for CEBPA mutations and promoter methylation in 102 cases of AML, including 43 CD7+ cases. Overall, there were 5 methylated cases, 6 cases with double mutations, and 3 cases with single mutations. Significantly, 10 of 43 CD7+ cases (23%) had either methylated or double-mutated CEBPA. The CD7+ subset included all 5 methylated cases and 5 of the 6 cases with double mutations. All 3 cases with single mutations were CD7-. No case exhibited both hypermethylation and mutations. We find that promoter methylation accounts for half of those CD7+ cases with CEBPA dysregulating abnormalities. Furthermore, methylated cases and those with bi-allelic CEBPA mutations have similar phenotypic features including expression of CD7 and lack of co-incident NPM1 mutations. Our study suggests that methylation testing may be as important as mutation testing for identifying AML cases with CEBPA dysregulation and may be indicated in the routine prognostic workup of AML.

559. PMID 21140452
Loss of mismatch repair (MMR) capacity may represent an important tumor initiating mechanism in ovarian cancer. We conducted a systematic review to analyze the frequency of microsatellite instability (MSI), immunohistochemical (IHC) staining for MMR proteins, and hypermethylation of the MLH1 promoter region in ovarian cancers. Studies examining MSI, loss of MMR gene expression by IHC staining and MLH1 promoter hypermethylation in ovarian cancer were identified by a systematic literature search of the PubMed electronic database through August 31, 2009. Pertinent data was extracted from eligible studies and estimates for pooled proportions were computed using random effects models. The pooled proportion of MSI detection was 0.10 (95% CI, 0.06-0.14) among 1234 cases in 22 studies. Dinonucleotide markers had a higher frequency of instability than mononucleotide markers. The pooled proportion of MLH1 or MSH2 staining loss was 0.06 (95% CI, 0.01-0.17) among 474 cases in 3 studies, with a higher frequency of loss in MLH1. The pooled proportion of MLH1 methylation was 0.10 (95% CI, 0.06-0.15) among 672 cases in 7 studies. Data reporting MSI and loss of MMR staining in the same cases was limited. Although MMR deficiency was found in all histologic subtypes, endometrioid cancers had the highest proportions. Approximately 10% of unselected ovarian cancers are related to MMR deficiency. While MMR deficiency is associated with improved survival in other MMR-deficiency related cancer sites, epidemiological and clinical factors related to the MMR-deficient phenotype have not been adequately studied in ovarian cancer to date.

560. PMID 22419128
Loss of the secreted Fzd-related protein 1 (SFRP1) and concurrent alteration of the SFRP1/WNT pathway are frequently observed in human cancers such as in renal cell cancer (RCC). Whether methylation of a SFRP1 CpG island locus in normal human solid tissues is associated with increased tissue specific cancer risk has not been determined to date. Here we measure the cancer risk attributable to SFRP1 DNA methylation in renal tissue. Pyrosequencing of bisulfite treated DNA was used for a case-control study including 120 normal-appearing renal tissues of autopsy specimens and 72 normal-appearing tissues obtained from tumor adjacent areas, and a cross sectional study of 96 RCCs. Association of methylation with demographic risk factor age, clinicopathological parameters and course of patients was investigated. We show significant hypermethylation of a SFRP1 CpG island locus in normal-appearing renal tissues from RCC patients compared with normal-appearing autopsy kidney tissues. Inter quartile analysis revealed a 6-, 13- and 11-fold increased cancer risk for the second, third and fourth quartiles of methylation in the age matched subgroup of tissues (p = 0.001, p = 1.3E-6, p = 6.9E-6). Methylation in autopsy tissues increased with age and methylation in tumors was an independent predictor of recurrence free survival. SFRP1 DNA methylation, accumulates with age in normal-appearing kidney tissues and is associated with increased renal cancer risk, suggesting this CGI sub region as an epigenetic susceptibility locus for RCC. Our data underline the need to further analyze the tissue specific risks conferred by methylated loci for the development of human cancers.

561. PMID 22249255
Loss of tumour suppressor gene function can occur as a result of epigenetic silencing of large chromosomal regions, referred to as long-range epigenetic silencing (LRES), and genome-wide analyses have revealed that LRES is present in many cancer types. Here we utilize Illumina Beadchip methylation array analysis to identify LRES across 800?kb of chromosome 5q31 in colorectal adenomas and carcinomas (n=34) relative to normal colonic epithelial DNA (n=6). This region encompasses 53 individual protocadherin (PCDH) genes divided among three gene clusters. Hypermethylation within these gene clusters is asynchronous; while most PCDH hypermethylation occurs early, and is apparent in adenomas, PCDHGC3 promoter methylation occurs later in the adenoma-carcinoma transition. PCDHGC3 was hypermethylated in 17/28 carcinomas (60.7%) according to methylation array analysis. Quantitative real-time reverse transcription-polymerase chain reaction showed that PCDHGC3 is the highest expressed PCDH in normal colonic epithelium, and that there was a strong reciprocal relationship between PCDHGC3 methylation and expression in carcinomas (R=-0.84). PCDH LRES patterns are reflected in colorectal tumour cell lines; adenoma cell lines are not methylated at PCDHGC3 and show abundant expression at the mRNA and protein level, while the expression is suppressed in hypermethylated carcinoma cell lines (R=-0.73). Short-interfering RNA-mediated reduction of PCDHGC3 led to a decrease of apoptosis in RG/C2 adenoma cells, and overexpression of PCDHGC3 in HCT116 cells resulted in the reduction of colony formation, consistent with tumour suppressor capabilities for PCDHGC3. Further functional analysis showed that PCDHGC3 can suppress Wnt and mammalian target of rapamycin signalling in colorectal cancer cell lines. Taken together, our data suggest that the PCDH LRES is an important tumour suppressor locus in colorectal cancer, and that PCDHGC3 may be a strong marker and driver for the adenoma-carcinoma transition.Oncogene advance online publication,16 January 2012; doi:10.1038/onc.2011.609.

562. PMID 18418463
Low gene expression of folylpolyglutamate synthase (FPGS) in colorectal mucosa correlates with low folate levels and poor survival of colorectal cancer (CRC) patients. Because gene-specific hypermethylation is affected by the folate level, the hypermethylation status in mucosa may also be linked to clinical outcome of CRC patients. The tumor suppressor gene p16INK4a (p16) regulates the cell cycle and angiogenic switch. In human neoplastic tissues, the main mechanism of p16 inactivation is promoter methylation. The aim of the study was to determine whether hypermethylation of the p16 promoter could be detected in mucosa of CRC patients (n = 181) and to analyze if hypermethylation was related to survival. The relation between p16 hypermethylation and expression of FPGS and two other folate-associated genes, reduced folate carrier 1 (RFC-1), and thymidylate synthase (TS), was analyzed (n = 63). The results showed that p16 was hypermethylated in 65 (36%) of the mucosa samples and that hypermethylation was age-related (P = 0.029). After adjustment for known risk factors, Cox regression analysis showed that Dukes' A-C patients with p16 hypermethylation in mucosa had an increased risk of cancer-related death (hazard ratio = 2.9, P = 0.007) and shorter disease-free survival (hazard ratio = 2.5, P = 0.015) compared with patients with no p16 hypermethylation. RFC-1 and FPGS gene expression levels were significantly correlated in patients lacking p16 hypermethylation in mucosa (P = 0.0003), but not at all correlated in patients having hypermethylation in mucosa (P = 1.0). In conclusion, p16 hypermethylation in mucosa of CRC patients was identified as an independent prognostic parameter for cancer-specific survival as well as an independent predictor of DFS. The results suggest that there might be a connection between folate-associated gene expression and p16 methylation status.

563. PMID 21937883
Lower levels of LINE-1 methylation in peripheral blood have been previously associated with risk of developing non-communicable conditions, the most well-explored of these being cancer, although recent research has begun to link altered LINE-1 methylation and cardiovascular disease. We examined the relationship between LINE-1 methylation and factors associated with metabolic and cardiovascular diseases through quantitative bisulfite pyrosequencing in DNA from peripheral blood samples from participants of the Samoan Family Study of Overweight and Diabetes (2002-03). The sample included 355 adult Samoans (88 men and 267 women) from both American Samoa and Samoa. In a model including all sample participants, men had significantly higher LINE-1 methylation levels than women (p=0.04), and lower levels of LINE-1 methylation were associated with higher levels of fasting LDL (p=0.02) and lower levels of fasting HDL (p=0.009). The findings from this study confirm that DNA "global" hypomethylation, (as measured by methylation at LINE-1 repeats) observed previously in cardiovascular disease is associated with altered levels of LDL and HDL in peripheral blood. Additionally, these findings strongly argue the need for further research, particularly including prospective studies, in order to understand the relationship between LINE-1 DNA methylation measured in blood and risk factors for cardiovascular disease.

564. PMID 19017733
Lung cancer has become a global public health burden, further substantiating the need for early diagnosis and more effective targeted therapies. The key to accomplishing both these goals is a better understanding of the genes and pathways disrupted during the initiation and progression of this disease. Gene promoter hypermethylation is an epigenetic modification of DNA at promoter CpG islands that together with changes in histone structure culminates in loss of transcription. The fact that gene promoter hypermethylation is a major mechanism for silencing genes in lung cancer has stimulated the development of screening approaches to identify additional genes and pathways that are disrupted within the epigenome. Some of these approaches include restriction landmark scanning, methylation CpG island amplification coupled with representational difference analysis, and transcriptome-wide screening. Genes identified by these approaches, their function, and prevalence in lung cancer are described. Recently, we used global screening approaches to interrogate 43 genes in and around the candidate lung cancer susceptibility locus, 6q23-25. Five genes, TCF21, SYNE1, AKAP12, IL20RA, and ACAT2, were methylated at 14 to 81% prevalence, but methylation was not associated with age at diagnosis or stage of lung cancer. These candidate tumor suppressor genes likely play key roles in contributing to sporadic lung cancer. The realization that methylation is a dominant mechanism in lung cancer etiology and its reversibility by pharmacologic agents has led to the initiation of translational studies to develop biomarkers in sputum for early detection and the testing of demethylating and histone deacetylation inhibitors for treatment of lung cancer.

565. PMID 20697358
Lung cancer is a common cancer and the leading cause of cancer-related death worldwide. Aberrant activation of WNT signaling is implicated in lung carcinogenesis. EMX2, a human homologue of the Drosophila empty spiracles gene is a homeodomain-containing transcription factor. The function of EMX2 has been linked to the WNT signaling pathway during embryonic patterning in mice. However, little is known about the role of EMX2 in human tumorigenesis. In this study, we found that EMX2 was dramatically downregulated in lung cancer tissue samples and this downregulation was associated with methylation of the EMX2 promoter. Restoration of EMX2 expression in lung cancer cells lacking endogenous EMX2 expression suppressed cell proliferation and invasive phenotypes, inhibited canonical WNT signaling, and sensitized lung cancer cells to the treatment of the chemo cytotoxic drug cisplatin. On the other hand, knockdown of EMX2 expression in lung cancer cells expressing endogenous EMX2 promoted cell proliferation, invasive phenotypes and canonical WNT signaling. Taken together, our study suggests that EMX2 may have important roles as a novel suppressor in human lung cancer.

566. PMID 21435086
Lung cancer is the leading cause of cancer-related death in the world and approximately 30-40% of patients with stage ? non-small cell lung cancer (NSCLC) die of recurrent disease. miRNA expression profiles can be diagnostic and prognostic markers of lung cancer. Recently, miR-34 family has been shown to be part of the p53 pathway which is frequently involved in lung cancer, and the expression of miR-34 has been reported to be regulated by DNA methylation. In present study, we investigated the correlation between DNA methylation status of miR-34 family and recurrence of stage ? NSCLC patients. miR-34a and miR-34b/c promoter methylation status were determined by nested methylation-specific PCR in FFPE tumor tissues from 161 patients of stage ? NSCLC. Furthermore, mature miR-34b and miR-34c expression were analyzed by qRT-PCR in the same panel tissues. Our results revealed that aberrant DNA methylation of miR-34b/c was correlated with a high probability of recurrence (p = 0.026) and associated with poor overall survival (p = 0.010) and disease-free survival (p = 0.017). No significant association was found for miR-34a methylation. Multivariate analysis showed that promoter hypermethylation of miR-34b/c was an independent prognostic factor of stage ? NSCLC. Moreover, no significant association between mature miR-34b and miR-34c expression and DNA methylation status was found. In conclusion, we have identified promoter hypermethylation of miR-34b/c as a relatively common event in NSCLC and might be a potential prognostic factor for stage ? NSCLC.

567. PMID 21971684
Lung cancer is the major health problem and leading cause of cancer-related deaths worldwide owing to late diagnosis and poor prognosis. Aberrant promoter methylation is an important mechanism for silencing tumor-suppressor genes in cancer and a promising tool for the development of molecular biomarkers. Ras association domain family 1A (RASSF1A), a pivotal gatekeeper of cell cycle progression, is highly methylated in a wide range of human sporadic tumors, including lung cancer. However, no significant prognostic implications have been observed in most studies qualitatively analyzed by methylation-specific PCR (MSP). We found that the RASSF1A promoter was aberrantly methylated in 44.7 and 37.4% of the tumors by pyrosequencing (PS) and MSP methods, respectively. RASSF1A methylation evaluated by the two methods was more frequent in ever-smokers and tumors with TP53 mutation than in never-smokers and tumors without TP53 mutation, respectively. Univariate and multivariate analyses revealed that strong methylation was an unfavorable prognostic factor with stage I (adjusted HR, 2.25; 95% CI 1.03-4.90; P=0.003) and squamous cell carcinoma patients (adjusted HR=2.25, 95% CI 1.03-4.90, P=0.042). Taken together, these results suggested that quantitative PS could gain wider applications in clinical samples as a promising method for early detection screening and prognosis compared with MSP.

568. PMID 21227399
Lynch syndrome is an autosomal dominant cancer predisposition syndrome characterized by loss of function of DNA mismatch repair enzyme MLH1, MSH2, MSH6, or PMS2. Mutations in MLH1 and MSH2 account for ~80% of the inherited cases. However, in up to 20% of cases suspected of having a germline mutation in MSH2 due to loss of MSH2 expression, a germline mutation is not identified. Recent studies have shown that some Lynch syndrome cases are due to 3' EPCAM/TACSTD1 deletions that subsequently lead to MSH2 promoter hypermethylation. In this study, we examined the frequency of this novel mechanism for MSH2 inactivation in cases recruited through the Colon Cancer Family Registry and from the Mayo Clinic Molecular Diagnostics Laboratory. From the combined cohort, 58 cases were selected in which immunohistochemical staining suggested a mutation in MSH2 or MSH6, but no mutations were identified on follow-up testing. Of these 58 cases, 11 demonstrated a deletion of EPCAM/TACSTD1. Of cases with a deletion, the methylation status of the MSH2 promoter was confirmed in tumor tissue using methylation-sensitive PCR primers. One case showed MSH2 promoter hypermethylation in the absence of a detectable EPCAM/TACSTD1 deletion. These results indicate that approximately 20% to 25% of cases suspected of having a mutation in MSH2 but in which a germline mutation is not detected, can be accounted for by germline deletions in EPCAM/TACSTD1. These data also suggest the presence of other alterations leading to MSH2 promoter hypermethylation.

569. PMID 18635238
Lynch syndrome is an inherited disease resulting predominantly in colorectal cancer (CRC). The crucial cause is DNA mismatch repair (MMR) malfunction that is associated mostly with MLH1 or MSH2 germline mutations. A significant hallmark of repair defects is a high level of instability in microsatellites (MSI-H). In many sporadic unstable CRCs, the MLH1 gene is inactivated by promoter hypermethylation in addition to extensive promoter methylation in many tumor-suppressor genes known as CpG island methylation phenotype (CIMP). To investigate the possible role of epigenetic alterations in causing MMR deficiency and thereby Lynch syndrome, we evaluated the MLH1 specific and global hypermethylation in hereditary CRCs. Of 22 Lynch-syndrome-related CRCs, 18 (81.8%) demonstrated various levels of DNA methylation; of these, 14 (63.6%) and 4 (18.2%) were methylated in distal and both distal and proximal regions of the MLH1 promoter, respectively. However, only 7/18 (38.9%) of results were confirmed by bisulfite sequencing. Similar methylation patterns in tumors and frequently in matched normal DNA were found in twelve and four patients with MLH1 and MSH2 alterations documented by the absence of protein or presence of germline mutation, respectively. Moreover, the same results were observed in five stable CRCs. None of 22 Lynch-syndrome-related tumors presented CIMP in contrast to 3/10 (30%) stable carcinomas. The rather randomly distributed weak methylation patterns in hereditary CRCs indicate that epigenetic events are redundant in Lynch-syndrome etiology, in contrast to the widespread DNA methylation in sporadic unstable CRCs. These methylation-profile differences can lead to more effective molecular diagnosis of Lynch syndrome.

570. PMID 20417091
Lynch syndrome is associated with deficiency of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. However, most MLH1 deficient tumours are sporadic in origin, and they can be identified if harbouring a BRAF V600E mutation or hypermethylation of the MLH1 gene promoter. The aim of this study was to validate our previously suggested clinically applicable strategy based on molecular characteristics for identifying which patients to refer for genetic counselling. The strategy was validated in an unselected cohort of 287 colorectal cancer patients. All tumours were tested for MLH1, PMS2, MSH2 and MSH6 protein expression with immunohistochemistry. DNA from MLH1 negative tumours was sequenced for BRAF mutations. If BRAF was wild-type, MLH1 promoter was subsequently analyzed for promoter hypermethylation. Most tumours, 251 (88%), stained positive for all four proteins. Six (2%) had negative MSH2 and one (<1%) isolated loss of MSH6. MLH1 and PMS2 were negative in 29 cases (10%). DNA quality allowed BRAF analysis in 27 of these with 14 mutations and 13 wild-type. DNA quality allowed methylation analysis in 11 of the 13 BRAF wild-type, and all but one were methylated. Subsequently, Lynch syndrome could not be ruled out in 12 patients. A follow-up at 8-10 years revealed four definite cases of Lynch syndrome and three highly suspicious. An easy and clinically applicable step-wise approach with immunohistochemistry (100%), BRAF sequencing (10%) and methylation analysis (5%) identified several patients with hereditary cancer. It is feasible to perform a molecular screening to select patients for genetic counselling.

571. PMID 21375527
Lynch syndrome, characterized by young-onset microsatellite unstable colorectal, endometrial and other cancers, is caused by germline mutations of the mismatch repair genes, most commonly MLH1, MSH2 and MSH6. Constitutional MLH1 epimutations, which manifest as soma-wide methylation and transcriptional silencing of a single allele, have been identified in a subset of patients with a Lynch syndrome phenotype in the absence of a mismatch repair mutation. This study aimed to determine if MLH1 epimutations predispose to the development of young-onset colorectal cancer in an ethnically diverse population of South African subjects. A total of 122 index cases with a diagnosis of colorectal cancer below 50 years of age, who had tested negative for a definitive pathogenic mutation of the key mismatch repair genes, were screened for constitutional MLH1 methylation in their leukocyte DNA. Monoallelic MLH1 epimutations were identified in two sporadic cases (1.6%): a male of black African descent and an Asian Indian female. Few alleles were affected by methylation in the female, indicating mosaicism. These cases provide further evidence of the aetiological role for MLH1 epimutations in cancer development and the requirement for sensitive molecular screening techniques to identify mosaic epimutations. Furthermore, while this mechanism is rare, it affects patients of multiple ethnic origins.

572. PMID 21255556
Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

573. PMID 20957490
MTHFR C677T and Helicobacter pylori infection are believed to play critical roles in the DNA methylation process, an epigenetic feature frequently found in gastric cancer. The aim of this study was to verify the associations between the MTHFR C677T polymorphism and the methylation status of three gastric cancer-related genes. The influence of H. pylori strains was also assessed. DNA extracted from 71 gastric tumor samples was available for MTHFR C677T genotyping by PCR-RFLP, promoter methylation identification by MS-PCR and H. pylori detection and posterior subtyping (cagA and vacA genes) by PCR. In the distal tumors, a positive correlation was found between the methylation of CDKN2A and the allele T carriers (r=0.357; p=0.009). Considering the eldest patients (age =60 years old), this correlation was even higher (r=0,417; p=0.014). H. pylori infection by highly pathogenic strains (cagA+/vacAs1m1) was also found correlated to promoter methylation of CDKN2A and the allele T carriers in distal tumors (r=0.484; p=0.026). No significant correlation was verified between MTHFR C677T genotype and promoter methylation status when we analyzed the general sample. DNA methylation in CDKN2A associated to the MTHFR 677T carrier is suggested to be a distal tumor characteristic, especially in those 60 years old or older, and it seems to depend on the infection by H. pylori cagA/vacAs1m1 strains.

574. PMID 21196400
MTSS1 (metastasis suppressor-1) was first identified as a metastasis suppressor missing in metastatic bladder carcinoma cell lines. The down-regulation of MTSS1 that may be caused by DNA methylation was also observed in many other types of cancer. While accumlating evidence for the function of MTSS1 support the concept that it is unlikely to be a metastasis suppressor, but actually acts as a scaffold protein that interacts with multiple partners to regulate actin dynamics. It has also been demonstrated that MTSS1 is involved in the Shh signaling pathway in the developing hair follicle and in basal cell carcinomas of the skin. Such evidence indicates that MTSS1 as a multiple functional molecular player and has an important role in development, carcinogenesis and metastasis. However, the biochemical mechanisms by which MTSS1 functions in cells and the physiological role of this protein in animals remain largely unknown. In this review, we will discuss the current knowledge of MTSS1's role in cancer metastasis, carcinogenesis, and development. The clinical significance of MTSS1 will also be discussed.

575. PMID 21811308
Macrosatellite repeats (MSRs) present an extreme example of copy number variation, yet their epigenetic regulation in normal and malignant cells is largely understudied. The CT47 cancer/testis antigen located on human Xq24 is organized as an array of 4.8 kb large units. CT47 is expressed in the testis and in certain types of cancer, but not in non-malignant somatic tissue. We used CT47 as a model to study a possible correlation between copy number variation, epigenetic regulation and transcription originating from MSRs in normal and malignant cells. In lymphoblastoid cell lines and primary fibroblasts, CT47 expression was absent, consistent with the observed heterochromatic structure and DNA hypermethylation of the CT47 promoter. Heterochromatinization of CT47 occurs early during development as human embryonic stem cells show high levels of DNA methylation and repressive chromatin modifications in the absence of CT47 expression. In small-cell lung carcinoma cell lines with low levels of CT47 transcripts, we observed reduced levels of histone 3 lysine 9 trimethylation (H3K9me3) and trimethylated lysine 27 of histone H3 (H3K27me3) without concomitant increase in euchromatic histone modifications. DNA methylation levels in the promoter region of CT47 are also significantly reduced in these cells. This supports a model in which during oncogenic transformation, there is a relative loss of repressive chromatin markers resulting in leaky expression of CT47. We conclude that some MSRs, like CT47 and the autosomal MSRs TAF11-Like, PRR20, ZAV and D4Z4, the latter being involved in facioscapulohumeral muscular dystrophy, seem to be governed by common regulatory mechanisms with their abundant expression mostly being restricted to the germ line.

576. PMID 21912609
Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV) at the promoters of the brain-derived neurotrophic factor (BDNF) gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM), and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

577. PMID 20428759
Malignant gliomas are highly lethal neoplasms that cannot be cured with currently available therapies. Temozolomide (TMZ) is a recently introduced alkylating agent that has yielded significant benefits and become a key agent in the treatment of high-grade gliomas. However, its survival benefit remains unsatisfactory. Understanding the molecular basis of TMZ sensitivity/resistance is necessary for improving the treatment outcome by devising strategies that are able to circumvent primary drug resistance. We therefore combined the in vitro TMZ response with microarray gene expression data to identify genes that could potentially be used to predict the response of malignant gliomas to TMZ therapy. We first obtained the individual IC50 values for TMZ in seven malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13) and then identified the genes whose expression correlated most highly with TMZ sensitivity employing a cDNA microarray. We present here a list of the most highly up-regulated and down-regulated genes which may be involved in conferring TMZ sensitivity/resistance in malignant gliomas, although most of the genes have not been implicated as a causal factor in the TMZ response except MGMT. We also demonstrated and confirmed the MGMT methylation status, quantitative MGMT mRNA levels, and MGMT protein expression levels in TMZ resistant glioma cells in vitro. Our results are thus consistent with previous studies and suggest that a dominant mechanism conferring sensitivity/resistance to TMZ exists in malignant glioma cells. Although the present study dose have several limitations, our reported candidate genes could represent not only potential molecular markers for TMZ sensitivity/resistance but also chemotherapy targets. Furthermore, the present study could provide a foundation for alternative therapeutic strategies including novel combination treatments that incorporate additional reagents directed at overcoming resistance to TMZ.

578. PMID 22064859
Mammalian RNAi machinery facilitating transcriptional gene silencing (TGS) is the RNA-induced transcriptional gene silencing-like (RITS-like) complex, comprising of Argonaute (Ago) and small interfering RNA (siRNA) components. We have previously demonstrated promoter-targeted siRNA induce TGS in human immunodeficiency virus type-1 (HIV-1) and simian immunodeficiency virus (SIV), which profoundly suppresses retrovirus replication via heterochromatin formation and histone methylation. Here, we examine subcellular co-localization of Ago proteins with promoter-targeted siRNAs during TGS of SIV and HIV-1 infection. Analysis of retrovirus-infected cells revealed Ago1 co-localized with siRNA in the nucleus, while Ago2 co-localized with siRNA in the inner nuclear envelope. Mismatched and scrambled siRNAs were observed in the cytoplasm, indicating sequence specificity. This is the first report directly visualizing nuclear compartment distribution of Ago-associated siRNA and further reveals a novel nuclear trafficking mechanism for RITS-like components involving the actin cytoskeleton. These results establish a model for elucidating mammalian TGS and suggest a fundamental mechanism underlying nuclear delivery of RITS-like components.

579. PMID 22322598
Mammalian male fertility depends on the epididymis, a highly segmented organ that promotes sperm maturation and protects sperm from oxidative damage. Remarkably little is known about how gene expression is controlled in the epididymis. A candidate to regulate genes crucial for epididymal function is reproductive homeobox gene on X chromosome (RHOX)5, a homeobox transcription factor essential for optimal sperm motility that is expressed in the caput region of the epididymis. Here, we report the identification of factors that control Rhox5 gene expression in epididymal cells in a developmentally regulated and region-specific fashion. First, we identify GATA transcription factor-binding sites in the Rhox5 proximal promoter (Pp) necessary for Rhox5 expression in epididymal cells in vitro and in vivo. Adjacent to the GATA sites are androgen-response elements, which bind to the nuclear hormone receptor androgen receptor (AR), and are responsible for the AR-dependent expression of Rhox5 in epididymal cells. We provide evidence that AR is recruited to the Pp in a region-specific and developmentally regulated manner in the epididymis that is dictated not only by differential AR availability but differential methylation of the Pp. Site-specific methylation of the Pp cytosine and guanine separated by one phosphate, most of which overlap with androgen-response elements, inhibited both AR occupancy at the Pp and Pp-dependent transcription in caput epididymal cells. Together, our data support a model in which DNA methylation, AR, and GATA factors collaborate to dictate the unique developmental and region-specific expression pattern of the RHOX5 homeobox transcription factor in the caput epididymis, which in turn controls the expression of genes critical for promoting sperm motility and function.

580. PMID 22374828
Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are mature CD5(+) B-cell malignancies with different biological/clinical characteristics. We recently reported an association between different prognostic subgroups of CLL (i.e., IGHV mutated and unmutated) and genomic methylation pattern. However, the relationship between DNA methylation and prognostic markers, such as the proliferation gene expression signature, has not been investigated in MCL. We applied high-resolution methylation microarrays (27,578 CpG sites) to assess the global DNA methylation profiles in 20 MCL (10 each with high/low proliferation signature) and 30 CLL (15 poor-prognostic IGHV unmutated subset #1 and 15 good-prognostic IGHV mutated subset #4) samples. Notably, MCL and each CLL subset displayed distinct genomic methylation profiles. After unsupervised hierarchical clustering, 17/20 MCL cases formed a cluster separate from CLL, while CLL subsets #1 and #4 formed subclusters. Surprisingly, few differentially methylated genes (n = 6) were identified between high vs. low proliferation MCL. In contrast, distinct methylation profiles were demonstrated for MCL and CLL. Importantly, certain functional classes of genes were preferentially methylated in either disease. For instance, developmental genes, in particular homeobox transcription factor genes (e.g., HLXB9, HOXA13), were more highly methylated in MCL, whereas apoptosis-related genes were enriched among targets methylated in CLL (e.g., CYFIP2, NR4A1). Results were validated using pyrosequencing, RQ-PCR and reexpression of specific genes. In summary, the methylation profile of MCL was homogeneous and no correlation with the proliferation signature was observed. Compared to CLL, however, marked differences were discovered such as the preferential methylation of homeobox genes in MCL.

581. PMID 21674123
Many cancer-related genes are regulated by an epigenetic mechanism through modification of the methylation status of CpG sites at the promoter. This study was carried out at a genome-wide scale to mine genes in which the methylation of CpG sites is altered in breast cancer tissues. Differential methylation hybridization analysis was conducted using a chromosomal DNA mixture of ten normal and cancer tissue sets. A CpG microarray harboring 237,220 CpG sites of the whole genome was interrogated and the resulting methylation level differences, as well as the RNA expression differences, between the normal and cancer sets for selected genes were verified in breast cell lines by methylation-specific PCR and real-time PCR analyses. As a result, we identified and verified novel genes that were hypermethylated in breast cancer, such as NRN1, CA5B and RPIA. Pathway analysis of the genes with altered methylation patterns identified the involvement of a differentiation-related network of genes whose activity may be heavily regulated by STAT1 in breast tumorigenesis. Our results suggest that epigenetic dysregulation of cellular processes relevant to STAT1-dependent cellular differentiation may be intimately involved in breast carcinogenesis. These findings lend credence to the possibility of using tumor-specific alterations in methylation patterns as biomarkers in estimating prognosis and assessing treatment options for breast cancer.

582. PMID 21301207
Many solid tumors and hematologic malignancies lack expression of the enzyme methylthioadenosine phosphorylase (MTAP), due either to deletion of the MTAP gene or to methylation of the MTAP promoter. In cells that have MTAP, its natural substrate, methylthioadenosine (MTA), generated during polyamine biosynthesis, is cleaved to adenine and 5-methylthioribose-1-phosphate. The latter compound is further metabolized to methionine. Adenine and methionine are further metabolized and hence salvaged. In MTAP-deficient cells, however, MTA is not cleaved and the salvage pathway for adenine and methionine is absent. As a result, MTAP-deficient cells are more sensitive than MTAP-positive cells to inhibitors of de novo purine synthesis and to methionine deprivation. The challenge has been to take advantage of MTAP deficiency, and the changes in metabolism that follow, to design a strategy for targeted treatment. In this review, the frequency of MTAP-deficiency is presented and past and recent strategies to target such deficient cells are discussed, including one in which MTA is administered, followed by very high doses of a toxic purine or pyrimidine analog. In normal host cells, adenine, generated from MTA, blocks conversion of the analog to its toxic nucleotide. In MTAP-deficient tumor cells, conversion proceeds and the tumor cells are selectively killed. Successful mouse studies using this novel strategy were recently reported.

583. PMID 22110741
Many studies have shown that microRNA expression in cancer may be regulated by epigenetic events. Recently, we found that in lung cancer miR-212 was strongly down-regulated. However, mechanisms involved in the regulation of miR-212 expression are unknown. Therefore, we addressed this point by investigating the molecular mechanisms of miR-212 silencing in lung cancer. We identified histone modifications rather than DNA hypermethylation as epigenetic events that regulate miR-212 levels in NSCLC. Moreover, we found that miR-212 silencing in vivo is closely associated with the severity of the disease.

584. PMID 20697987
Maspin is a serine protease inhibitor with tumor-suppressor activity. Maspin can suppress tumor growth and metastasis in vivo and tumor cell motility and invasion in vitro. Previous studies indicate that the loss of Maspin expression is closely linked to aberrant methylation of the Maspin promoter. We examined the promoter methylation status of Maspin in tumor and corresponding serum of breast cancer patients. In addition, protein expression of this gene was also assessed to determine possible correlation between promoter hypermethylation and gene silencing. Further, we investigated the correlation of Maspin expression with vascular endothelial growth factor (VEGF-A) and MTA1 expression. Maspin methylation was analyzed by methylation-specific PCR in 100 invasive ductal breast carcinoma patients' tumors and circulating DNA in a prospective study. Promoter hypermethylation was correlated with expression of the encoded protein in tumors by immunohistochemistry. Significant correlation was observed between promoter hypermethylation of Maspin (r?=?+0.88; p?=?0.0001) in tumors and paired sera. Significant association was found between Maspin promoter hypermethylation and loss of its protein expression (p?=?0.01, OR?=?3.1, 95% CI?=?1.3-7.4). The expression of VEGF-A and MTA1 was lower in tumors with high Maspin expression compared to tumors with loss of Maspin expression. Our results indicate that aberrant promoter methylation is associated with loss of Maspin immunoreactivity in breast cancer tissues. Further, loss of Maspin expression is significantly correlated with increased expression of VEGF-A and MTA1.

585. PMID 21400503
Maternally expressed gene 3 (MEG3) is a maternally expressed imprinted gene representing a large noncoding RNA in which microRNAs (miRNAs) and small nucleolar RNAs are also hosted. It is capable of interacting with cyclic AMP, p53, murine double minute 2 (MDM2) and growth differentiation factor 15 (GDF15) playing a role in cell proliferation control. MEG3 expression is under epigenetic control, and aberrant CpG methylation has been observed in several types of cancer. Moreover, gene copy number loss has been reported as additional mechanism associated with tumorigenesis. MEG3 deletion seems to upregulate the paternally expressed genes and on the other hand downregulate the expression of downstream maternally expressed genes and tumor suppressor miRNAs, although there are conflicting data on the topic. MEG3 could represent a tumor suppressor gene located in chromosome 14q32 and its association with tumorigenesis is growing every day.

586. PMID 20853133
Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma.

587. PMID 20820873
Medulloblastomas (MB) are the most common malignant brain tumors in childhood. Alkylator-based drugs are effective agents in the treatment of patients with MB. In several tumors, including malignant glioma, elevated O(6)-methylguanine-DNA methyltransferase (MGMT) expression levels or lack of MGMT promoter methylation have been found to be associated with resistance to alkylating chemotherapeutic agents such as temozolomide (TMZ). In this study, we examined the MGMT status of MB and central nervous system primitive neuroectodermal tumor (PNET) cells and two large sets of primary MB. In seven MB/PNET cell lines investigated, MGMT promoter methylation was detected only in D425 human MB cells as assayed by the qualitative methylation-specific PCR and the more quantitative pyrosequencing assay. In D425 human MB cells, MGMT mRNA and protein expression was clearly lower when compared with the MGMT expression in the other MB/PNET cell lines. In MB/PNET cells, sensitivity towards TMZ and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) correlated with MGMT methylation and MGMT mRNA expression. Pyrosequencing in 67 primary MB samples revealed a mean percentage of MGMT methylation of 3.7-92% (mean: 13.25%, median: 10.67%). Percentage of MGMT methylation and MGMT mRNA expression as determined by quantitative RT-PCR correlated inversely (n = 46; Pearson correlation r (2) = 0.14, P = 0.01). We then analyzed MGMT mRNA expression in a second set of 47 formalin-fixed paraffin-embedded primary MB samples from clinically well-documented patients treated within the prospective randomized multicenter trial HIT'91. No association was found between MGMT mRNA expression and progression-free or overall survival. Therefore, it is not currently recommended to use MGMT mRNA expression analysis to determine who should receive alkylating agents and who should not.

588. PMID 19268989
Melanoma is the most serious, highly aggressive form of skin cancer with recent dramatic increases in incidence. Current therapies are relatively ineffective, highlighting the need for a better understanding of the molecular mechanisms contributing to the disease. We have previously shown that activation of Rap1 promotes melanoma cell proliferation and migration through the mitogen-activated protein kinase pathway and integrin activation. In the present study, we show that expression of Rap1GAP, a specific negative regulator of Rap1, is decreased in human melanoma tumors and cell lines. Overexpression of Rap1GAP in melanoma cells blocks Rap1 activation and extracellular signal-regulated kinase (ERK) phosphorylation and inhibits melanoma cell proliferation and survival. In addition, overexpression of Rap1GAP also inhibits focal adhesion formation and decreases melanoma cell migration. Rap1GAP down-regulation is due to its promoter methylation, a mechanism of gene silencing in tumors. Furthermore, treatment of melanoma cells with the demethylating agent 5-aza-2'-deoxycytidine reinduces Rap1GAP expression, followed by decreased Rap1 activity, ERK phosphorylation, and cell proliferation and survival-changes that are significantly blunted in cells transfected by small interfering RNA-mediated Rap1GAP knockdown. Taken together, our findings indicate that down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration.

589. PMID 19074834
Menin is a tumor suppressor protein mutated in patients with multiple endocrine neoplasia type 1. We show that menin is essential for canonical Wnt/beta-catenin signaling in cultured rodent islet tumor cells. In these cells, overexpression of menin significantly enhances TCF gene assay reporter activity in response to beta-catenin activation. Contrastingly, inhibition of menin expression with Men1 siRNA decreases TCF reporter gene activity. Likewise, multiple endocrine neoplasia type 1 disease associated missense mutations of menin abrogate the ability to increase TCF reporter gene activity. We show that menin physically interacts with proteins involved in the canonical Wnt signaling pathway, including beta-catenin, TCF3 (TCFL1), and weakly with TCF4 (TCFL2). Menin overexpression increases expression of the Wnt/beta-catenin downstream target gene Axin2, which is associated with increased H3K4 trimethylation of the Axin2 gene promoter. Moreover, inhibition of menin expression by siRNA abrogates H3K4 trimethylation and Axin2 gene expression. Based on these studies, we hypothesized that Wnt signaling could inhibit islet cell proliferation because loss of menin function is thought to increase endocrine tumor cell proliferation. TGP61 rodent islet tumor cells treated with a glycogen synthase kinase 3beta inhibitor that increases Wnt pathway signaling had decreased cell proliferation compared with vehicle-treated cells. Collectively, these data suggest that menin has an essential role in Wnt/beta-catenin signaling through a mechanism that eventually affects histone trimethylation of the downstream target gene Axin2, and activation of Wnt/beta-catenin signaling inhibits islet tumor cell proliferation.

590. PMID 19360301
Metastasis is a multi-step process involving many biomolecular changes and DNA methylation is one such molecular change. Although differences in DNA methylation have been reported in matched primary and metastatic mammary carcinoma, no such differences have been reported in gastric carcinoma. Accordingly, to investigate whether DNA methylation profiles in metastatic gastric carcinoma differ from those of their primary counterparts, we investigated the DNA methylation of eleven genes, ADAM23, CDH1, FHIT, FLNC, GSTP1, ITGA4, LOX, RUNX3, THBS1, TIMP3, and UCHL1 in 74 matched human primary gastric carcinomas, lymph node metastases, non-neoplastic gastric mucosal, and uninvolved lymph node tissues by utilizing methylation-specific PCR. Seven of these genes (ADAM23, FLNC, ITGA4, LOX, RUNX3, TIMP3, and UCHL1) showed cancer-specific methylation, and three (CDH1, FHIT, and THBS1) showed cancer-unrelated methylation. GSTP1 was rarely methylated in any tissue type. Of the seven genes that showed cancer-specific methylation, FLNC was more frequently methylated in metastatic gastric carcinomas than in their primary counterparts (p=0.004). In addition, the average number of methylated genes in metastatic tumors was greater than that in primary tumors (p=0.004). The high-methylation group (cases with three or more genes methylated in primary tumors) was found to contain more women (p=0.031) and diffuse type tumors by Lauren classification (p=0.022). DNA methylation profiles were not found to affect prognosis. We suggest that promoter methylation of FLNC may be involved in the lymph node metastasis of gastric carcinoma and that the DNA methylation statuses of metastatic tumors should be considered in node-positive gastric carcinoma.

591. PMID 22644675
Metastasis tumor antigen 1 (MTA1), a novel candidate metastasis-associated gene, is known to increase the migration and invasion of various tumor cells in vitro. It also plays an important role in tumorigenesis and tumor aggressiveness of breast cancer. Estrogen receptor alpha (ERa) plays an important role in the etiology of breast cancer and has been widely accepted as a prognostic marker for breast cancer and a response predictor for endocrine therapy. The ERa gene methylation has been linked to the lack of ERa expression in breast cancer. The aim of the study is to assess the correlation between the ERa methylation and MTA1 expression in breast cancer and further to investigate whether the repressed ERa methylation can downregulate the expression of MTA1 in vitro. In general, we found ERa methylation had significant correlation with the MTA1 expression (p?<?0.05) in female patients of breast cancer (n?=?102) by methylation-specific polymerase chain reaction and immunohistochemistry. To gain a deeper insight into the molecular mechanism underlying the relation between MTA1 and ERa methylation, we treated the invasive breast cancer cell lines with the demethylating agent, found the downregulation of MTA1 protein expression, and mRNA with the unmethylation of ERa (p?<?0.05). And the